Ising anyons in Kitaev's honeycomb lattice model

Ann. Phys. 323:9 (2008) arXiv:0712.1164

Ville Lahtinen

Jiannis K. Pachos

Dublin 09/08

Motivation

Kitaev's honeycomb lattice model:
A.Y. Kitaev, Annals of Physics, 321:2, 2006

- An exactly solvable 2D spin model on a honeycomb lattice.
- Conjectured to support non-abelian Ising anyons (if you know FQHE and believe in Chern number and CFT arguments...)

Motivation

Kitaev's honeycomb lattice model:
A.Y. Kitaev, Annals of Physics, 321:2, 2006

- An exactly solvable 2D spin model on a honeycomb lattice.
- Conjectured to support non-abelian Ising anyons (if you know FQHE and believe in Chern number and CFT arguments...)

We solve the model and ...

- Demonstrate the fusion rules from the spectral behavior. Lahtinen et.al., Ann. Phys. 323:9 (2008)
- Calculate the braid statistics as a holonomy (work in progress)

The honeycomb lattice model

$$
H=-\sum_{\alpha \in\{x, y, z\}} J_{\alpha} \sum_{\alpha-\text { links }} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha}-K \sum_{p}\left(\sigma^{x} \sigma^{y} \sigma^{z}\right)_{p}
$$

Represent spins by Majorana fermions:

$$
\begin{gathered}
H=\frac{i}{4} \sum_{i, j \in \Lambda} \hat{A}_{i j} c_{i} c_{j}, \quad \hat{A}_{i j}=2 J_{i j} \hat{u}_{i j}+2 K \sum_{k} \hat{u}_{i k} \hat{u}_{k j} . \\
{\left[H, \hat{u}_{i j}\right]=0 \quad \hat{w}_{p}=\prod_{i, j \in \partial p} \hat{u}_{i j}}
\end{gathered}
$$

- Fix the eigenvalues $u_{i j}$ on all links (ij)

- fix the eigenvalues w_{p}
= fix the underlying vortex configuration

Solving the model

- Choose a (M, N)-unit cell containing $M N$ plaquettes
- Create a n-vortex configuration with vortex separation s
- Fourier transform with respect to the unit cell
- Diagonalize the Hamiltonian

$$
\begin{aligned}
H=M N \int_{-\pi / M}^{\pi / M} \frac{d p_{x}}{2 \pi} \int_{-\pi / N}^{\pi / N} \frac{d p_{y}}{2 \pi} & {\left[\sum_{i=n+1}^{M N}\left|\epsilon_{i}(\mathbf{p})\right| b_{i}^{\dagger} b_{i}+\sum_{i=1}^{n}\left|\alpha_{i}^{s}(\mathbf{p})\right| z_{i}^{\dagger} z_{i}\right.} \\
& \left.-\left(\sum_{i=n+1}^{M N} \frac{\left|\epsilon_{i}(\mathbf{p})\right|}{2}+\sum_{i=1}^{n} \frac{\left|\alpha_{i}^{s}(\mathbf{p})\right|}{2}\right)\right]
\end{aligned}
$$

- We study the spectrum as a function of J_{i}, K, n and s using a $(20,20)$-unit cell

Phase space geometry

The fermion gap: $\quad \Delta=\min _{\mathbf{p}}\left|\epsilon_{1}(\mathbf{p})\right|$

- A phase always gapped (toric code)
- B phase gapped when $K>0$ (Ising)
- Phase boundaries at $\Delta \rightarrow 0$ depend on underlying vortex configuration
- Boundaries:
- Vortex-free: $J=1 / 2$
- Full-vortex: $J=1 / \sqrt{ } 2$
- Sparse: $1 / 2 \leq J \leq 1 / \sqrt{ } 2$

Temperature - vortex density: Tunable parameter that induces phase transition

$$
\left(J_{z}=1 \text { and } J=J_{x}=J_{y}\right)
$$

vortex-free

full-vortex

Zero modes

The fermion gap $\Delta_{2 v}$ above a 2-vortex configuration

- Insensitive to s in the abelian phase
- Vanishes with s in the non-abelian phase

$$
\begin{aligned}
|1\rangle & =b_{1}^{\dagger}\left(\mathbf{p}_{0}\right)|g s\rangle, & \Delta_{2 v} & =\min _{p_{0}}\left|\epsilon_{1}(\mathbf{p})\right| \\
|2\rangle & =b_{2}^{\dagger}\left(\mathbf{p}_{0}\right)|g s\rangle, & \Delta_{2 v, 2} & =\min _{p_{0}}\left|\epsilon_{2}(\mathbf{p})\right|
\end{aligned}
$$

- Twofold degenerate ground state at large s
- Degeneracy lifted at small s
- $\Delta_{2 v, 2}$ insensitive to s

One zero mode per two vortices

Zero modes

Degeneracy at large s :

- 4-vortex: fourfold degeneracy
- 6-vortex: eightfold degeneracy

Degeneracy at small s:

- 4-vortex: $1^{\text {st }}$ excited state twofold degenerate
- 6-vortex: $1^{\text {st }}$ and $2^{\text {nd }}$ excited states threefold degenerate
\boldsymbol{p}-wave superconductors:
2^{n}-fold degeneracy in the presence of $2 n$ well separated Ising vortices

Lifting of degeneracy at short ranges due to vortex interactions

4-vortex

6-vortex

Zero modes and fusion rules

Ising fusion rules: $\quad \psi \times \psi=1, \quad \psi \times \sigma=\sigma, \quad \sigma \times \sigma=1+\psi$
Identify: $\quad \psi \sim$ fermion mode, $\sigma \sim$ vortex
Interpret: Unoccupied zero mode $\sim \sigma x \sigma \rightarrow 1$
Occupied zero mode $\sim \sigma x \sigma \rightarrow \psi$
E.g. $\quad \sigma \times \sigma \times \sigma \times \sigma=1+1+\psi+\psi$

Four fusion channels:

$$
\begin{aligned}
& \sigma \times \sigma \times \sigma \times \sigma=1+1+\psi+\psi \\
& (\sigma \times \sigma) \times(\sigma \times \sigma) \rightarrow \psi \times \psi=1 \\
& (\sigma \times \sigma) \times(\sigma \times \sigma) \rightarrow 1 \times \psi=\psi \\
& (\sigma \times \sigma) \times(\sigma \times \sigma) \rightarrow \psi \times 1=\psi
\end{aligned}
$$

The low-energy spectrum

For large vortex separations ($s>2$)

- Consist of only vortices
- Applies for arbitrary number of well separated vortices
- Agrees with the Ising prediction

For small vortex separations (s<2)

- In the absence of vortices spectrum purely fermionic
- Vacuum fusion channels tend towards ground state
- Fermion fusion channels tend towards higher energies

(c)

(d) $\mathrm{C}_{1} \mathrm{CiC}_{2}^{-1} \mathrm{C}_{2}^{-1} \sim \square$

Braid statistics as a holonomy

Degenerate ground states and fusion channels

Braiding acts on these states as:

$$
R^{2}=e^{-\frac{\pi}{4} i}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Braid statistics as a holonomy

Discrete form of non-abelian Berry phase:

$$
\Gamma_{C}=P \exp \oint_{C} A^{\mu}(\lambda) d \lambda_{\mu}=P \prod_{t=1}^{T}\left(\sum_{i=1}^{n}\left|\Psi_{i}(t)\right\rangle\left\langle\Psi_{i}(t)\right|\right)
$$

$C \sim$ a loop in a parameter space (space of 4-vortex configurations)
$T \sim$ total number of discrete steps on C
$t \sim$ particular step on C
$P \sim$ "time ordering" in t
$n \sim$ ground state degeneracy (twofold for four vortices)

Strategy:

1) Diagonalize Hamiltonian for every t
2) Construct the projector to the ground state space
3) Multiply them together to evaluate Γ_{C}

Braid statistics as a holonomy

$$
\hat{A}_{i j}=2 J_{i j} \hat{u}_{i j}+2 K \sum_{k} \hat{u}_{i k} \hat{u}_{j k}
$$

- Assume that $J_{i j}$ and K can be tuned independently at every link

$$
J_{i j}, \quad K_{i j}
$$

Braid statistics as a holonomy

$$
\hat{A}_{i j}=2 J_{i j} \hat{u}_{i j}+2 K \sum_{k} \hat{u}_{i k} \hat{u}_{j k}
$$

- Assume that $J_{i j}$ and K can be tuned independently at every link

$$
J_{i j} \rightarrow 0, \quad K_{i j} \rightarrow 0
$$

Braid statistics as a holonomy

$$
\hat{A}_{i j}=2 J_{i j} \hat{u}_{i j}+2 K \sum_{k} \hat{u}_{i k} \hat{u}_{j k}
$$

- Assume that $J_{i j}$ and K can be tuned independently at every link

$$
J_{i j} \rightarrow-J_{i j} \quad K_{i j} \rightarrow-K_{i j}
$$

- Can be done "continuosly" in S steps!

Braid statistics as a holonomy

 UNIVERSITY OF LEEDSSo, when C spans Q plaquettes and moving a vortex involves S steps, the holonomy can be evaluated with $T=Q S$ diagonalizations...

Braid statistics as a holonomy

So, when C spans Q plaquettes and moving a vortex involves S steps, the holonomy can be evaluated with $T=Q S$ diagonalizations...

Numerical diagonalization gives:

$$
H=\int \mathrm{d}^{2} \mathbf{p} \sum_{i=1}^{M N} \frac{\epsilon_{i}(\mathbf{p})}{2}\left[b_{i}^{\dagger}(\mathbf{p}) b_{i}(\mathbf{p})-d_{i}^{\dagger}(\mathbf{p}) d_{i}(\mathbf{p})\right] \quad d_{i}^{\dagger}(-\mathbf{p})=b_{i}(\mathbf{p})
$$

The degenerate ground states can be represented by:

$$
\begin{aligned}
\left|\Psi_{i_{1} i_{2}}(\mathbf{p})\right\rangle=\sum_{k, \ldots, l=1}^{M N+1} \frac{\epsilon_{k, \ldots, l}}{\sqrt{(M N+1)!}} & a_{k}^{\dagger}(\mathbf{p})|0\rangle \otimes \cdots \otimes a_{l}^{\dagger}(\mathbf{p})|0\rangle \\
& a_{k}^{\dagger}(\mathbf{p}) \in\left\{d_{1}^{\dagger}(\mathbf{p}), \ldots, d_{M N}^{\dagger}(\mathbf{p}), b_{n}^{\dagger}(\mathbf{p})\right\} \\
& \mathrm{i}_{1} \mathrm{i}_{2}=(01),(10) . \quad \mathrm{i}_{\mathrm{n}}=1
\end{aligned}
$$

Braid statistics as a holonomy

Inner product of two such vectors is given by...

$$
\left\langle\Psi_{i_{1} i_{2}}(\mathbf{p}, t) \mid \Psi_{j_{1} j_{n}}\left(\mathbf{p}, t^{\prime}\right)\right\rangle=\operatorname{det}\left(A_{i_{1} j_{1}}^{t \prime^{\prime}}(\mathbf{p})\right) \quad\left[A_{i_{1} j_{1}}^{t t^{\prime}}(\mathbf{p})\right]_{k l}=\langle 0| a_{k}(\mathbf{p}, t) a_{l}^{\dagger}\left(\left(\mathbf{p}, t^{\prime}\right)|0\rangle\right.
$$

... and hence the holonomy unitary can be written as:

$$
\left.\left.\Gamma_{C}(\mathbf{p})=P \prod_{t=1}^{T}\binom{\operatorname{det}\left(A_{00}^{t, t+1}(\mathbf{p})\right)}{\operatorname{det}\left(A_{10}^{t, t+1}(\mathbf{p})\right)} \operatorname{det}\left(A_{01}^{t, t+1}(\mathbf{p})\right), A_{11}^{t, t+1}(\mathbf{p})\right) .\right)
$$

However, this applies only to for a single value of momentum...

- Describes a finite periodic system with twisted boundary conditions

Braid statistics as a holonomy

Fermion gap and the zero modes

Braid statistics as a holonomy

B UNIVERSITY OF LEEDS

Fermion gap and the zero modes

Braid statistics as a holonomy

Fidelity of the holonomy unitary

