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Principle of qubit protection I
A. Kitaev, Ann. Phys. 303, 2, (2003)

Coding space separated from Single error that can be detected.
non-coding one by large gap A.

Absence of decoherence to first
order:

PH.P = P AN




Principle of qubit protection II

Absence of decoherence to second
order:

1 ~
PH.Q—QH.P = P® i3
Hg

Can be generalized to arbitrary or-
der in H. — notion of protected
system at order IN.

Can we achieve N large in a phys-
ical system 7

Potentially dangerous double
error.




Lattice gauge theory in deconfined regime I
A. Kitaev, Ann. Phys. 303, 2, (2003)

Z5 charge U; = [1$" o Z5 flux Bo = [lijen o7,
]
f
HKltaev — _—ZU — ZBD
[]

Localized excitations W|th finite energy gap
Ground-state degeneracy depends on global topology of the
lattice.



Lattice gauge theory in deconfined regime II
Two-fold degenerate ground-state on a cylinder

Degeneracy enforced by non-local

symmetries:

row operators:

P=1
J
column operators:
Qj = ]7% Pl
i



Electric noise: [l;jecluster @

LLocal errors are harmless
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Creates localized Z5 fluxes.

Magnetic noise: [];jeciuster 7;;
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Creates local Z» charges.

These errors create only virtual states above finite energy gap.
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The only dangerous errors are non-local |
‘They are suppressed by a factor (noise/AC’f)'—

Electric noise transfers one Z5 flux
along v-path and flips P;: Relax-
ation in flux basis or dephasing in
charge basis.

Magnetic noise transfers one Z»
charge along h-path and flips Qj:
Relaxation in charge basis or de-
phasing in flux basis.




Basics of Josephson junction arrays

¢;; local phase of Cooper pair
condensate

~ _ 0 . :
nj = 98, number of Cooper pairs
on island j g

21 (] -
17 Dy Ji i7-aAT
Ec N
H = —EJ Z COS(¢7; — ¢j — AZ]) + ?Z(Cw )nznj
(ij) 1
Ey: Josephson coupling energy Ec: Charging energy
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A rhombus with half a flux quantum

Define (92] = ¢; — qb] — A then:

YK
012 + 023 + 034 + 041 =7, mod 2«

— Get two-fold degenerate classical ground-state, with 6;; = i%
— Quantum fluctuations (Ec £ 0) of phases lift this degeneracy

4

Quantum 4
1<+> 3 —/—— 1<>3

2 Tunneling 2



LLocal constraint on the classical ground-states

Enforces Bob = 1 for classical
ground-states.
Physical origin of Ar.
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Effect of quantum fluctuations of phase variables

Basic Tunneling
Process

Basic tunneling process acts as: H§i) o

]
Tunnel rate: Ac ~ EJ3/4Eé/4 exp(—45p)

where: Sp = 1.61(E,/Ec)Y/2, (Ioffe and Feigel’'man, 2002)
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LLocalization of Cooper pairs, and charge 4e condensate

Physical interpretation of local flip The parity Uj of n; IS conserved
operator Uj: and single Cooper pairs are local-
ized in Aharonov-Bohm cages.

(exp(ig;)) =0

(exp(i2¢;)) # 0

No 2e condensate if Ac #= 0, but
4e condensatel!

Ujlej) = o5 + m)
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Experimental realization: M. Gershenson et al. (2007)
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Evidence for finite Ac and charge 4e condensate
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Phase stiffness of charge 4e condenstate

2E JE,

15



Computational issues I: hierarchical approximation

Series composition of Z> junctions

V(¢) = —E»cos(29)

[ 7 /E-\Z2| 1EZ2
EY = |1-— ( 2) -2
|~ 256 \E./ | 8Ec
[ 1 /E-\2
E. = 1——(—2) 2
16 \Ec

92(X)
o [ N w » (&)}

Parallel composition

ES, = KE5
E. = K lEc
R-QT R
S S S S
&5 & &
S SA— S
&/ &

I ®

E,/Ec
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Computational issues II: single rhombus as Z» junction

Effective Eo Test of coarse graining:
3
2 aqod 3 rhombi in series
15 oal E2/Ec
0; 0.6
2 4 6 8 10 04t
Ej/Ec 0.2
Effective capacitance
j,‘Ceff‘ | | | | ‘7 0.25
al 0.20
3L 0.15F
2F 0.10+
1t 0.05f
oL

0.00
0
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Decoherence induced by finite frequency fluctuations

So far, we have considered only
virtual  transition to excited
states.

But the bath may provide some
energy: problem of real transi-
tions.

Spectral width of bath: D

Defr = Min(kgT, D)

n = A/Desf

A A
]

“N M\ N
A

f<—\r\r\
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Toy model

SN,

0 L+1

H = Hsyst + Hpatn + Hc

L
Hsyst:A Z vl
j=1
L
He=—) [HG+1®X,11/

j=0
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Tree approximation
Density of states at generation p:

pp(w) = ap(w — Ap)'?,
restricted to Ap < w < Ap + Dp.

R(z) = (in|(z — H) " 1|in)

1
R(z) = z—31(2) (W) d
>p(z) = OéprQ/z _ Zp_wzprl(z)




Weak coupling analysis

Assume z ~ 0, and Then, imaginary parts satisfy:
- RT1(2) < Ay —351(2) ~ c1oaWEDITTH(=S5,)
Lo <L e
1—1
2 =R, 1(2) < Apo1 ST, 1(2) = epo1an Wi DT (—SE,)
z—R>n(2) > Ap —330(2) = oan,,%(z—I—|An|)r”

2

Wi...W, 1 n—1+1

—3321(2) ~ (Dll 5 n1> (0104ng1+ ...cn_lan_1D£_11+ >an(z—|— | Ap])™
e e o n_

— Master equation, with rates appearing at order 2n in pertur-

bative expansion.
— NoO use to make systems of size L with L > n.
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Assume [H, P;] = [H,Q;] =0

o — o
J SR S SR S S—
J SR G G G S
J S G G G S
J S G G G W
P? = 1, [P,P]=0

{PFOWa Qcolumn} =0

Can diagonalize simultaneously:

P17 P27 ceey PM7 QlQQa RE) Q].QN

Gives only two-dimensional irre-
ducible representations!
1)Start with | T), such that:

BT = a4 1)
Q1Q41 1) = 5511
2)Define | |) as:
| 1) =Q1[T)
3)| |) satisfies:
Bl = —af )
Q1Q41 1)y = B 1)
4)Furthermore:
Qi1 1) =55 1)



Doublets exist as long as one can find at least ONE pair F;, Qj,
commuting with H.
Example of a static disorder configuration which does NOT Iift
any degeneracy!
N N O N N N

Q

. Nt I b b "
| N N Y Y N

)
N

Local noise breaks degeneracies only at high orders (M, or N)
in perturbation theory!
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Example: X-Z Ising model
Doucot, Feigel’'man, Ioffe, Ioselevich, P. R. B. 71, (2005)

Conservation laws

Q (v) B ]
H = _JmZO_%CO-;j_JzZO'fO? Frow = TEI;([)WJT
\43) (4] Qcolumn = H ‘77:?
! ! t I ! ! recolumn
o o S o o o Pz'2 = 1, [pz.,pj] —0
e ¢ o o o o Q7 = 1, [Q,Q,]=0
[ @ @ @ @ @
O O ® ® ® ® {Prow, Qcolumn} =0
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Implementation with trapped ions

Interactions along rows Interactions along columns

7
kA A
j’ii
sl A
- r/
'.‘I‘I,;' e
K 11/

with T. Coudreau, P. Milman, and L. Ioffe
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Phonon-mediated long-ranged spin coupling

The Sgrensen-Mglmer process

-\. b
i <L bR
ik LA s o 2 ___-fj,—,:x_!u-'cn-.f.:-
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S o lwgn>

—— Hagn-I>

FI:. 2. Level scheme for a pair of ions sharing an oscillator
degree of freedom. Left: By application of laser light with
frequencies w,, * & where & Is somewhal smaller than the
vibrational frequency », we identifv four transition paths
between the states |ggiad and |eednd. which interfere as
described in the text. Right: Four similar transiton paths are
identified berween states |eg ) n} and |geb|n}, vielding the same
effective coupling among these states as between the states in
the left panel.

Effective interaction

Jefr = (n2)?/|v — 3
Q: Light intensity (Rabi fre-
quency)
n: Photon energy/recoil energy

v. Phonon frequency
d: detuning of the main transition
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Constraints for pratical implementation

Wish to maximize Jsfr, because energy gap has to be larger than
main source of noise, likely to be due to laser frequency noise,
typically o f ~ 500Hz

Weak coupling: nQ2 < |v — 6|, sO Jefr < nS2, but:

One has to couple only to one phonon mode: nf2 < Av

In one dimension: Av = (v/3—-1)v

In two dimensions: (5 x 5 array): Av ~0.1v

Increasing v decreases the distance between ions

Optimal size seems to be N <3 (1D) or N <5 (2D)
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Long range interactions help, because they induce larger gaps!

2 X2 3x3|4x4|5xDb
SRI| 0.84 0.58 0.32 0.20
LRI | 0.84 0.96 0.92 0.80
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Estimates for decoherence time

4 ions O ions 5 x 5 ions
e (HZz) | 1.5-1073 | 7.5-107°> | 1.9-10" 4
7(s) 6.6-102 | 1.3-10% | 5.3-1010
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Initialization of the protected

Switching off a local field:

qubit

Effect of a static noise:
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Time T

30



Conclusions

1) Kitaev's Z5 lattice model implemented in the low energy sec-
tor of some Josephson junction arrays.

2) These arrays are composed of fully frustrated rhombi.

3) Topological protection arises in the phase where quantum
phase fluctuations destroy the 2e condensate, while preserving
the 4e condensate.

4) Experimental evidence for this phase: observation of enhanced
immunity against static flux fluctuations, evidence of a finite Ac.
5) Protection still works in the presence of dynamical fluctua-
tions, up to order n = A/ Dgff.

6) Alternative implementations of protection by non-local sym-
metries.
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Appendix: Lattice gauge theories with a finite gauge group G
(A. Kitaev, quant-ph/9707021)

If G is a permutation group S, for n large enough, can generate
universal quantum computation!
Mochon, Phys. Rev. A 67, 022315 (2003) and 69, 032306 (2004)
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Basics of |lattice gauge theory

Link ij — g;; € G, G finite group
Path v — ®(v) = 9:j9x9k191:
lLLocal gauge transformation:
start from h; € G

9ij — 9i; = higijh; !

P(y) — P'(y) = hiP(h T
States of localized flux <— con-
jugacy classes in G
States of several localized fluxes:

a choice of a common origin for
defining fluxes is crucial.

o
O,

glj

<g.

e

A

K

o)

=
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Non-trivial holonomy of fluxons: pair exchange
Bais, Nucl. Phys. B 170, 32, (1980)
Lo and Preskill, Phys. Rev. D 48, 4821, (1993))

Before exchange: After exchange:

SR R R

|l
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Non-trivial holonomy of fluxons: 27 rotation around a fixed flux

Before 27 rotation: After rotation:

WL : RSN
T
~ _ ;-1
g — g=h "gh
h — h=(h tgn) th(h 1gh)
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Universal computation
anyons

Mochon, Phys.

with

Rev. A 67, 022315

(2003) and 69, 032306 (2004)
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FIG. 2. Conjugating a pair of anyons.

0) G “sufficiently” non-Abelian (non-
solvable)

1) We can braid or exchange any two
excitations

2) We can fuse a pair of anyons and
detect whether there is a particle left
behind or whether they had vacuum
quantum numbers.

3)We can produce a pair of anyons
in a state that is chosen at random
from the two-particle subspace that
has vacuum gquantum numbers.

4) We have ancilla pairs |¢g) ® |g—1)
for any g € G, where the individaul

anyons have trivial electric charge.
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