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Principle of qubit protection I

A. Kitaev, Ann. Phys. 303, 2, (2003)

Coding space separated from

non-coding one by large gap ∆.

Absence of decoherence to first

order:

PHcP = P ⊗ H̃
(1)
env

Single error that can be detected.

∆
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Principle of qubit protection II

Absence of decoherence to second

order:

PHcQ
1

H0
QHcP = P ⊗ H̃

(2)
env

Can be generalized to arbitrary or-

der in Hc → notion of protected

system at order N .

Can we achieve N large in a phys-

ical system ?

Potentially dangerous double

error.

∆
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Lattice gauge theory in deconfined regime I

A. Kitaev, Ann. Phys. 303, 2, (2003)

Z2 charge Ui =
∏(i)

j σx
ij

i j

Z2 flux B� =
∏

ij∈� σz
ij

HKitaev = −∆c

2

∑

i

Ui −
∆f

2

∑

�

B�

Localized excitations with finite energy gap

Ground-state degeneracy depends on global topology of the

lattice.
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Lattice gauge theory in deconfined regime II

Two-fold degenerate ground-state on a cylinder

Degeneracy enforced by non-local

symmetries:

row operators:

Pi =
∏

j

σz
ij

column operators:

Qj =
∏

i

σx
ij

{Pi, Qj} = 0

P=1

P=−1
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Local errors are harmless

Electric noise:
∏

ij∈cluster σx
ij

Creates localized Z2 fluxes.

Magnetic noise:
∏

ij∈cluster σz
ij

Creates local Z2 charges.

These errors create only virtual states above finite energy gap.
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The only dangerous errors are non-local !

They are suppressed by a factor (noise/∆c,f)
L

Electric noise transfers one Z2 flux

along v-path and flips Pi: Relax-

ation in flux basis or dephasing in

charge basis.

Magnetic noise transfers one Z2

charge along h-path and flips Qj:

Relaxation in charge basis or de-

phasing in flux basis.
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Basics of Josephson junction arrays

φj; local phase of Cooper pair

condensate

n̂j = ∂
i∂φj

: number of Cooper pairs

on island j

∆φj∆nj ≃ 2π

Aij =
2π

Φ0

∫ j

i
~Aij.d~r

ϕ i

H = −EJ

∑

〈ij〉
cos(φi − φj − Aij) +

Ec

2

∑

ij

(C−1
ij )n̂in̂j

EJ: Josephson coupling energy Ec: Charging energy

8



A rhombus with half a flux quantum

Define θij = φi − φj − Aij, then:

θ12 + θ23 + θ34 + θ41 ≡ π, mod 2π

→ Get two-fold degenerate classical ground-state, with θij = ±π
4

→ Quantum fluctuations (Ec 6= 0) of phases lift this degeneracy

1

2

3

4

1

2

3

4Quantum

Tunneling
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Local constraint on the classical ground-states

Enforces B� = 1 for classical

ground-states.

Physical origin of ∆f.
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Effect of quantum fluctuations of phase variables

Basic Tunneling
 Process

ji i j

Basic tunneling process acts as:
∏(i)

j σx
ij

Tunnel rate: ∆c ≃ E
3/4
J E

1/4
c exp(−4S0)

where: S0 = 1.61(EJ/Ec)1/2, (Ioffe and Feigel’man, 2002)
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Localization of Cooper pairs, and charge 4e condensate

Physical interpretation of local flip

operator Uj:

Uj|φj〉 = |φj + π〉

Uj|nj〉 = (−1)nj |nj〉

The parity Uj of nj is conserved

and single Cooper pairs are local-

ized in Aharonov-Bohm cages.

〈exp(iφj)〉 = 0

〈exp(i2φj)〉 6= 0

No 2e condensate if ∆c 6= 0, but

4e condensate!
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Experimental realization: M. Gershenson et al. (2007)
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Evidence for finite ∆c and charge 4e condensate
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Phase stiffness of charge 4e condenstate
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Computational issues I: hierarchical approximation

Series composition of Z2 junctions

V (φ) = −E2 cos(2φ)

E′
2 =

[

1 − 7

256

(

E2

Ec

)2
]

1

8

E2
2

Ec

E′
c =

[

1 − 1

16

(

E2

Ec

)2
]

2Ec
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Computational issues II: single rhombus as Z2 junction

Effective E2
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Decoherence induced by finite frequency fluctuations

So far, we have considered only

virtual transition to excited

states.

But the bath may provide some

energy: problem of real transi-

tions.

Spectral width of bath: D

Deff = Min(kBT, D)

n = ∆/Deff

∆
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Toy model

∆

0

1 2 L

L+1

H = Hsyst + Hbath + Hc

Hsyst = ∆
L
∑

j=1

|j〉〈j|

Hc = −
L
∑

j=0

|j〉〈j + 1| ⊗ Xj+1/2
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Tree approximation

Density of states at generation p:

ρp(ω) = αp(ω − ∆p)
rp,

restricted to ∆p < ω < ∆p + Dp.

R(z) = 〈in|(z − H)−1|in〉

R(z) =
1

z − Σ1(z)

Σp(z) = αpW
2
p

∫

ρp(ω) dω

z − ω − Σp+1(z)

∆2
1∆

∆4

∆

∆3

Ε

n
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Weak coupling analysis

Assume z ≃ 0, and

z −ℜΣ1(z) ≤ ∆1

... ≤ ...

z −ℜΣn−1(z) ≤ ∆n−1

z −ℜΣn(z) ≥ ∆n

Then, imaginary parts satisfy:

−ℑΣ1(z) ≃ c1α1W2
1D

r1−1
1 (−ℑΣ2)

... ≃ ...

−ℑΣn−1(z) ≃ cn−1αn−1W2
n−1D

rn−1−1
n−1 (−ℑΣn)

−ℑΣn(z) = αnW2
n (z + |∆n|)rn

−ℑΣ1(z) ≃
(

W1...Wn

D1...Dn−1

)2(

c1α1D
r1+1
1 ...cn−1αn−1D

rn−1+1
n−1

)

αn(z + |∆n|)rn

→ Master equation, with rates appearing at order 2n in pertur-

bative expansion.

→ No use to make systems of size L with L > n.
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Assume [H, Pi] = [H, Qj] = 0

P2
i = 1, [Pi, Pj] = 0

Q2
i = 1, [Qi, Qj] = 0

{Prow, Qcolumn} = 0

Can diagonalize simultaneously:

P1, P2, ..., PM , Q1Q2, ..., Q1QN

Gives only two-dimensional irre-

ducible representations!

1)Start with | ↑〉, such that:

Pi| ↑〉 = αi| ↑〉
Q1Qj| ↑〉 = βj| ↑〉

2)Define | ↓〉 as:

| ↓〉 = Q1| ↑〉

3)| ↓〉 satisfies:

Pi| ↓〉 = −αi| ↓〉
Q1Qj| ↓〉 = βj| ↓〉

4)Furthermore:

Qj| ↑〉 = βj| ↓〉



Doublets exist as long as one can find at least ONE pair Pi, Qj,

commuting with H.

Example of a static disorder configuration which does NOT lift

any degeneracy!

Q

P

N N N N N

N

N

N

N

N

N

N N N

N N N

N N N

Local noise breaks degeneracies only at high orders (M , or N)

in perturbation theory!

23



Example: X-Z Ising model
Douçot, Feigel’man, Ioffe, Ioselevich, P. R. B. 71, (2005)

H = −Jx

(h)
∑

〈ij〉
σx

i σx
j −Jz

(v)
∑

〈ij〉
σz

i σz
j

Conservation laws

Prow =
∏

r∈row

σz
r

Qcolumn =
∏

r∈column

σx
r

P2
i = 1, [Pi, Pj] = 0

Q2
i = 1, [Qi, Qj] = 0

{Prow, Qcolumn} = 0
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Implementation with trapped ions

Interactions along rows Interactions along columns

with T. Coudreau, P. Milman, and L. Ioffe
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Phonon-mediated long-ranged spin coupling

The Sørensen-Mølmer process Effective interaction

Jeff = (ηΩ)2/|ν − δ|

Ω: Light intensity (Rabi fre-

quency)

η: Photon energy/recoil energy

ν: Phonon frequency

δ: detuning of the main transition
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Constraints for pratical implementation

Wish to maximize Jeff, because energy gap has to be larger than

main source of noise, likely to be due to laser frequency noise,

typically δf ∼ 500Hz

Weak coupling: ηΩ < |ν − δ|, so Jeff < ηΩ, but:

One has to couple only to one phonon mode: ηΩ < ∆ν

In one dimension: ∆ν = (
√

3 − 1)ν

In two dimensions: (5 × 5 array): ∆ν ≃ 0.1ν

Increasing ν decreases the distance between ions

Optimal size seems to be N ≤ 3 (1D) or N ≤ 5 (2D)
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Long range interactions help, because they induce larger gaps!

2 × 2 3 × 3 4 × 4 5 × 5

SRI 0.84 0.58 0.32 0.20
LRI 0.84 0.96 0.92 0.80
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Estimates for decoherence time

4 ions 9 ions 5 × 5 ions

Γeff (Hz) 1.5 · 10−3 7.5 · 10−5 1.9 · 10−11

τ(s) 6.6 · 102 1.3 · 104 5.3 · 1010
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Initialization of the protected qubit

Switching off a local field: Effect of a static noise:
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Conclusions

1) Kitaev’s Z2 lattice model implemented in the low energy sec-

tor of some Josephson junction arrays.

2) These arrays are composed of fully frustrated rhombi.

3) Topological protection arises in the phase where quantum

phase fluctuations destroy the 2e condensate, while preserving

the 4e condensate.

4) Experimental evidence for this phase: observation of enhanced

immunity against static flux fluctuations, evidence of a finite ∆c.

5) Protection still works in the presence of dynamical fluctua-

tions, up to order n = ∆/Deff.

6) Alternative implementations of protection by non-local sym-

metries.
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Appendix: Lattice gauge theories with a finite gauge group G

(A. Kitaev, quant-ph/9707021)

If G is a permutation group Sn for n large enough, can generate

universal quantum computation!

Mochon, Phys. Rev. A 67, 022315 (2003) and 69, 032306 (2004)
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Basics of lattice gauge theory

Link ij −→ gij ∈ G, G finite group

Path γ −→ Φ(γ) = gijgjkgklgli

Local gauge transformation:

start from hj ∈ G

gij −→ g′ij = higijhj
−1

Φ(γ) −→ Φ′(γ) = hiΦ(γ)hi
−1

States of localized flux ⇐⇒ con-

jugacy classes in G

States of several localized fluxes:

a choice of a common origin for

defining fluxes is crucial.

gij

jkg

gkl
lig

ijg

i j

l k

ji

Φ(γ)
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Non-trivial holonomy of fluxons: pair exchange

Bais, Nucl. Phys. B 170, 32, (1980)

Lo and Preskill, Phys. Rev. D 48, 4821, (1993))

Before exchange: After exchange:

g −→ g̃ = h−1gh

h −→ h
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Non-trivial holonomy of fluxons: 2π rotation around a fixed flux

Before 2π rotation: After rotation:

O

g −→ g̃ = h−1gh

h −→ h̃ = (h−1gh)−1h(h−1gh)
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Universal computation with

anyons

Mochon, Phys. Rev. A 67, 022315

(2003) and 69, 032306 (2004)

0) G “sufficiently” non-Abelian (non-

solvable)

1) We can braid or exchange any two

excitations

2) We can fuse a pair of anyons and

detect whether there is a particle left

behind or whether they had vacuum

quantum numbers.

3)We can produce a pair of anyons

in a state that is chosen at random

from the two-particle subspace that

has vacuum quantum numbers.

4) We have ancilla pairs |g〉 ⊗ |g−1〉
for any g ∈ G, where the individaul

anyons have trivial electric charge.
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