Higher Genus Ward Identities
 IQF 2013 Maynooth

Michael Tuite
National University of Ireland Galway

In collaboration with:

Tom Gilroy
National University of Ireland Galway

Introduction

(1) Vertex Operator Algebras (VOAs).
(2) Genus One Zhu Theory and Ward Identities.
(3) The Partition and Correlation Functions for a VOA on a Genus Two Riemann Surface.
(9) Genus Two Zhu Theory and Ward Identities.

Vertex Operator Algebras (VOAs) - Chiral CFT

A Vector Space $V . \mathbb{Z}$-graded $V=\oplus_{n \geq 0} V_{n}$ with $\operatorname{dim} V_{n}<\infty$.
Vacuum Vector. A distinguished element $1 \in V_{0}$.
Vertex Operators. For each $u \in V$ there exists a vertex operator

$$
Y(u, z)=\sum_{n \in \mathbb{Z}} u(n) z^{-n-1}, \quad(\text { not physics modes!) }
$$

a formal Laurent series in z with modes $u(n) \in \operatorname{End}(V)$.
Creativity. $Y(u, z) \mathbf{1}=u+O(z)$ i.e. $u(n) \mathbf{1}=\delta_{n,-1} u$, for all $n \geq-1$.
Locality. For each $u, v \in V$ and sufficiently large integer N

$$
(x-y)^{N}[Y(u, x), Y(v, y)]=0
$$

Conformal Virasoro Vector. A distinguished vector $\omega \in V_{2}$ with

$$
\begin{aligned}
Y(\omega, z) & =\sum_{n \in \mathbb{Z}} L(n) z^{-n-2}, \quad \text { (physics modes here!) } \\
{[L(m), L(n)] } & =(m-n) L(m+n)+C \frac{m^{3}-m}{12} \delta_{m,-n} \operatorname{Id}_{V} .
\end{aligned}
$$

$L(0)$ gives \mathbb{Z}-grading: $L(0) u=n u$ for $u \in V_{n}$ for weight $\mathrm{wt}(u)=n$.
Translation. $L(-1) \mathbf{1}=0$ and

$$
[L(-1), Y(u, z)]=\frac{\partial}{\partial z} Y(u, z) \equiv \sum_{n \in \mathbb{Z}}(-n-1) u(n) z^{-n-2}
$$

Some consequences (amongst many!):

$$
\begin{aligned}
o(u): V_{k} & \rightarrow V_{k} \quad \text { for } o(u) \equiv u(\operatorname{wt}(u)-1) \text { (physics zero mode) } \\
{[u(m), Y(v, z)] } & =\sum_{i \geq 0}\binom{m}{i} Y(u(i) v, z) z^{m-i}, \quad \text { (a finite sum). }
\end{aligned}
$$

We can define an invariant symmetric bilinear form \langle,$\rangle on V$ where

$$
\langle Y(u, z) a, b\rangle=\left\langle a, Y^{\dagger}(u, z) b\right\rangle
$$

for adjoint

$$
Y^{\dagger}(u, z)=\sum_{n \in \mathbb{Z}} u^{\dagger}(n) z^{-n-1}=Y\left(e^{z L(1)}\left(-z^{-2}\right)^{L(0)} u, z^{-1}\right)
$$

For quasiprimary u (for which $L(1) u=1$) of weight $\mathrm{wt}(u)$

$$
u^{\dagger}(n)=(-1)^{\mathrm{wt}(u)} u(-n-2 \mathrm{wt}(u)-2) .
$$

Thus $L^{\dagger}(n)=L(-n)$ and $\langle a, b\rangle=0$ if $\operatorname{wt}(a) \neq \mathrm{wt}(b)$.
We consider V for which \langle,$\rangle is unique (with normalization \langle\mathbf{1}, \mathbf{1}\rangle=1$) and invertible and call such a form the Li-Zamolodchikov or Li-Z metric.

The Heisenberg Algebra or Bosonic String

Consider $a \in V_{1}$ whose modes obey

$$
[a(m), a(n)]=m \delta_{m,-n} \operatorname{Id}_{V} \quad \text { i.e. }[a(m), Y(a, z)]=\operatorname{Id}_{V} m z^{m-1}
$$

$Y(a, z)$ generates a VOA with vector space V with Fock basis

$$
a(-1)^{r_{1}} a(-2)^{r_{2}} \ldots a(-n)^{r_{n}} \mathbf{1}, \quad r_{i} \geq 0
$$

with $a=a(-1) \mathbf{1}$ and $a(n) \mathbf{1}=0$ for all $n \geq 0$.
The Virasoro vector is $\omega=\frac{1}{2} a(-1)^{2} \mathbf{1}$ for central charge $C=1$ with

$$
L(0)=\frac{1}{2} a(0)^{2}+\sum_{m>0} a(-m) a(m)
$$

Each Fock vector $a(-1)^{r_{1}} \ldots a(-n)^{r_{n}} \mathbf{1} \in V_{k}$ has \mathbb{Z}-grade

$$
k=1 . r_{1}+2 . r_{2}+\ldots+n \cdot r_{n}, \quad \text { an integer partition of } k
$$

Since $a(n)^{\dagger}=-a(-n)$, Fock vectors form a Li-Z metric orthogonal basis.

The Genus One Partition and Correlation Functions

Define the genus one partition function (for formal parameter q later identified as a modular parameter).

$$
Z_{V}^{(1)}(q)=\operatorname{Tr}_{V}\left(q^{L(0)-C / 24}\right)=\sum_{k \geq 0} \operatorname{dim} V_{n} q^{n-C / 24}
$$

Formal 1-point and n-point correlation functions are defined by

$$
\begin{gathered}
Z_{V}^{(1)}(u, q)=\operatorname{Tr}_{V}\left(o(u) q^{L(0)-C / 24}\right) \\
Z_{V}^{(1)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; q\right)=Z_{V}^{(1)}\left(Y\left[u_{1}, z_{1}\right] \ldots Y\left[u_{n}, z_{n}\right] \mathbf{1}, q\right)
\end{gathered}
$$

for "square-bracket" operators

$$
Y[u, z]=\sum_{n \in \mathbb{Z}} u[n] z^{-n-1}=Y\left(e^{z L(0)} u, e^{z}-1\right)
$$

These satisfy a VOA isomorphic to V for Virasoro vector $\widetilde{\omega}=\omega-\frac{C}{24} \mathbf{1}$.

Genus One Zhu Recursion Theory

A deep and effective theory for understanding how modular and elliptic functions arise for VOAs. Based on locality, Zhu recursion relates n-pt functions to $n-1$-pt functions. Thus

$$
\begin{aligned}
Z_{V}^{(1)}(u, x ; v, y ; q)= & \operatorname{Tr}_{V}\left(o(u) o(v) q^{L(0)-C / 24}\right) \\
& +\sum_{m \geq 0} \frac{1}{m!} \frac{\partial^{m}}{\partial y^{m}} P_{1}(x-y) Z_{V}^{(1)}(u[m] v, q)
\end{aligned}
$$

for elliptic and modular functions

$$
\begin{aligned}
P_{1}(z) & =-\sum_{n \in \mathbb{Z}, n \neq 0} \frac{e^{n z}}{1-q^{n}}=\frac{1}{z}-\sum_{n \geq 1} E_{2 n}(q) z^{2 n-1} \\
E_{2 n}(q) & =-\frac{B_{2 n}}{(2 n)!}+\frac{2}{(2 n-1)!} \sum_{r \geq 0} \frac{r^{2 n-1} q^{r}}{1-q^{r}}
\end{aligned}
$$

for Eisenstein series of even weight $2 n$ and Bernoulli nos $B_{2 n}$. In particular, $P_{2}(z)=-\frac{\partial}{\partial z} P_{1}(z)=\wp(z)+E_{2}(q)$, for the Weierstrass function $\wp(z)$ for $z \in \mathbb{C}$ and $q=e^{2 \pi i \tau}$ for $\tau \in \mathbb{H}_{1}$.

Some Ward and Heisenberg Identities

For the Virasoro vector $\widetilde{\omega}=\omega-\frac{C}{24} 1$ we find

$$
Z^{(1)}(\widetilde{\omega}, q)=\operatorname{Tr}_{V}\left(\left(L(0)-\frac{C}{24}\right) q^{L(0)-C / 24}\right)=q \frac{\partial}{\partial q} Z^{(1)}(q)=\frac{1}{2 \pi i} \frac{\partial}{\partial \tau} Z^{(1)}(q) .
$$

For n primary vectors u_{1}, \ldots, u_{n}, Zhu reduction gives the Ward identity

$$
\begin{aligned}
& Z_{V}^{(1)}\left(\tilde{\omega}, x ; u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; q\right)=q \frac{\partial}{\partial q} Z_{V}^{(1)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; q\right) \\
& +\sum_{1 \leq i \leq n}\left[P_{1}\left(x-z_{i}\right) \frac{\partial}{\partial z_{i}}+\operatorname{wt}\left[u_{i}\right] \frac{\partial}{\partial z_{i}} P_{1}\left(x-z_{i}\right)\right] Z_{V}^{(1)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; q\right)
\end{aligned}
$$

For the Heisenberg VOA M, Zhu reduction gives all n-pt functions e.g.

$$
Z_{M}^{(1)}(a, x ; a, y ; q)=P_{2}(x-y) Z_{M}^{(1)}(q) .
$$

Then $Z_{M}^{(1)}(\widetilde{\omega}, q)=\frac{1}{2} \lim _{x \rightarrow y}\left(Z_{M}^{(1)}(a, x ; a, y ; q)-\frac{Z_{M}^{(1)}(q)}{(x-y)^{2}}\right)=\frac{1}{2} E_{2}(q) Z_{M}^{(1)}(q)$.
$\Rightarrow \mathrm{ODE}: \quad q \frac{\partial}{\partial q} Z_{M}^{(1)}(q)=\frac{1}{2} E_{2}(q) Z_{M}^{(1)}(q) \quad$ i.e. $Z_{M}^{(1)}(q)=1 / \eta(q)$.

Heisenberg Modules

Zhu reduction also applies to n-pt correlation functions for a VOA module. For a Heisenberg module N_{α} (i.e. $a(n) w=\alpha \delta_{n 0} w$ for all $w \in N_{\alpha}$ and $n \geq 0$ for some $\alpha \in \mathbb{C}$) one finds directly that

$$
Z_{\alpha}^{(1)}(q)=\operatorname{Tr}_{N_{\alpha}}\left(q^{L(0)-1 / 24}\right)=\frac{q^{\alpha^{2} / 2}}{\eta(q)}
$$

The Virasoro 1-pt function is again

$$
Z_{\alpha}^{(1)}(\widetilde{\omega}, q)=q \frac{\partial}{\partial q} Z_{\alpha}^{(1)}(q)
$$

On the other hand, Zhu reduction gives

$$
Z_{\alpha}^{(1)}(a, x ; a, y ; q)=\left(\frac{\alpha^{2}}{2}+P_{2}(x-y)\right) Z_{\alpha}^{(1)}(q)
$$

so that

$$
Z_{\alpha}^{(1)}(\widetilde{\omega}, q)=\left(\frac{\alpha^{2}}{2}+\frac{1}{2} E_{2}(q)\right) Z_{\alpha}^{(1)}(q)
$$

Comparing implies $Z_{\alpha}^{(1)}(\widetilde{\omega}, q)$ satisfies an ODE with solution $q^{\alpha^{2} / 2} / \eta(q)$.

Genus Two Riemann Surface from Two Sewn Tori

Consider two tori $\Sigma_{a}^{(1)}$ with modular parameters $q_{a}=e^{2 \pi i \tau_{a}}$ for $a=1,2$. Identify annular regions shown via the sewing relation

$$
z_{1} z_{2}=\epsilon, \quad \epsilon \in \mathbb{C}
$$

Defines a genus two Riemann surface $\Sigma^{(2)}$ parameterized by

$$
\mathcal{D}^{\epsilon}=\left\{\left(\tau_{1}, \tau_{2}, \epsilon\right) \in \mathbb{H}_{1} \times \mathbb{H}_{1} \times \mathbb{C}:|\epsilon|<\frac{1}{4} D\left(\tau_{1}\right) D\left(\tau_{2}\right)\right\}
$$

(where $D(\tau)=2 \pi \min _{(m, n) \neq(0,0)}|m+n \tau|$).

Structures on $\Sigma^{(2)}$

For standard homology basis a_{i}, b_{j} with $i, j=1,2$ on a genus 2 Riemann surface consider the normalized differential of the second kind. This is a symmetric meromorphic form $\omega^{(2)}(x, y)$ obeying

$$
\omega^{(2)}(x, y) \sim \frac{d x d y}{(x-y)^{2}}
$$

for local coordinates $x \sim y$ with $\oint_{a_{i}} \omega^{(2)}(x, \cdot)=0$.
We can use $\omega^{(2)}$ to find a normalized basis of holomorphic 1-forms ν_{i} and the period matrix $\Omega_{i j}$:

$$
\begin{aligned}
\nu_{i}(x) & =\oint_{b_{i}} \omega^{(2)}(x, \cdot), \quad \oint_{a_{j}} \nu_{i}=\delta_{i j} \\
\Omega_{i j} & =\frac{1}{2 \pi i} \oint_{b_{i}} \nu_{i}
\end{aligned}
$$

$\omega^{(2)}$ can be determined from the genus one normalized differential

$$
\omega^{(1)}=P_{2}(x-y) d x d y, \quad P_{2}(z)=\frac{1}{z^{2}}+\sum_{n \geq 1}(2 n-1) E_{2 n}(q) z^{2 n-2},
$$

for each sewn torus [Yamada, Mason-T].
We define an infinite matrix indexed by $k, l \geq 1$

$$
A(k, l, \tau, \epsilon)=\epsilon^{(k+l) / 2} \frac{1}{\sqrt{k l}}(-1)^{k+1} \frac{(k+l-1)!}{(k-1)!(l-1)!} E_{k+l}(q)
$$

$$
=\left[\begin{array}{ccccc}
\epsilon E_{2}(q) & 0 & \sqrt{3} \epsilon^{2} E_{4}(q) & 0 & \cdots \\
0 & -3 \epsilon^{2} E_{4}(q) & 0 & -5 \sqrt{2} \epsilon^{3} E_{6}(q) & \cdots \\
\sqrt{3} \epsilon^{2} E_{4}(q) & 0 & 10 \epsilon^{3} E_{6}(q) & 0 & \cdots \\
0 & -5 \sqrt{2} \epsilon^{3} E_{6}(q) & 0 & -35 \epsilon^{4} E_{8}(q) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Convergence of $\left(I-A_{1} A_{2}\right)^{-1}$ and $\operatorname{det}\left(I-A_{1} A_{2}\right)$

Let A_{1} and A_{2} denote the matrix for modular parameter τ_{1} and τ_{2} resp. and consider the infinite matrix $I-A_{1} A_{2}$ where I is the infinite identity matrix. We define $\left(I-A_{1} A_{2}\right)^{-1}$ and $\operatorname{det}\left(I-A_{1} A_{2}\right)$ by

$$
\begin{aligned}
\left(I-A_{1} A_{2}\right)^{-1} & =\sum_{n \geq 0}\left(A_{1} A_{2}\right)^{n} \\
\log \operatorname{det}\left(I-A_{1} A_{2}\right) & =\operatorname{Tr} \log \left(I-A_{1} A_{2}\right)=-\sum_{n \geq 1} \frac{1}{n} \operatorname{Tr}\left(\left(A_{1} A_{2}\right)^{n}\right) .
\end{aligned}
$$

Theorem (Mason-T)

- $\left(I-A_{1} A_{2}\right)^{-1}$ is convergent on the sewing domain \mathcal{D}^{ϵ}.
- $\operatorname{det}\left(I-A_{1} A_{2}\right)$ is non-vanishing and holomorphic on \mathcal{D}^{ϵ}.

Theorem (Mason-T)

$\Omega\left(\tau_{1}, \tau_{2}, \epsilon\right)$ is holomorphic on \mathcal{D}^{ϵ} and is given by

$$
\begin{aligned}
& 2 \pi i \Omega_{11}=2 \pi i \tau_{1}+\epsilon\left(A_{2}\left(I-A_{1} A_{2}\right)^{-1}\right)(1,1) \\
& 2 \pi i \Omega_{22}=2 \pi i \tau_{2}+\epsilon\left(\left(A_{1}\left(I-A_{2} A_{1}\right)^{-1}\right)(1,1)\right. \\
& 2 \pi i \Omega_{12}=-\epsilon\left(\left(I-A_{1} A_{2}\right)^{-1}(1,1)\right.
\end{aligned}
$$

Here $(1,1)$ refers to the $(1,1)$-entry of a matrix.
There are related closed formulas for the normalized differential $\omega^{(2)}(x, y)$ and the holomorphic 1 -forms $\nu_{1}(x)$ and $\nu_{2}(x)$.

The Genus Two Partition Function

We define the genus two partition function in terms of 1-point functions $Z_{V}^{(1)}\left(u, \tau_{a}\right)$ for all $u \in V$.

$$
Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in V_{[n]}} Z_{V}^{(1)}\left(u, q_{1}\right) Z_{V}^{(1)}\left(\bar{u}, q_{2}\right)
$$

for genus one 1-pt functions $Z_{V}^{(1)}\left(u, q_{1}\right)$ etc and summing over any V-basis $\{u\}$ with LiZ dual basis $\{\bar{u}\}$.

Theorem (Mason-T)

For the rank Heisenberg VOA M we have

- $Z_{M}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=\frac{1}{\eta\left(q_{1}\right) \eta\left(q_{2}\right)}\left(\operatorname{det}\left(I-A_{1} A_{2}\right)\right)^{-1 / 2}$.
- $Z_{M}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)$ is holomorphic on \mathcal{D}^{ϵ}.
- $Z_{M}^{(2)}$ is automorphic wrt $S L(2, \mathbb{Z}) \times S L(2, \mathbb{Z}) \subset S p(4, \mathbb{Z})$ (with an automorphy factor $\operatorname{det}(C \Omega+D)^{-1 / 2}$ and multiplier system).

Heisenberg Modules

Let $N_{\alpha_{1}}, N_{\alpha_{2}}$ be a pair of Heisenberg modules. Define

$$
Z_{\alpha_{1}, \alpha_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in M_{[n]}} Z_{\alpha_{1}}^{(1)}\left(u, q_{1}\right) Z_{\alpha_{2}}^{(1)}\left(\bar{u}, q_{2}\right)
$$

for genus one 1-pt functions $Z_{\alpha_{1}}^{(1)}\left(u, q_{1}\right)$ etc.
Find a natural generalization of the genus one result $Z_{\alpha}^{(1)}(q)=q^{\alpha^{2} / 2} Z_{M}^{(1)}(q)$:

Theorem (Mason-T)

$Z_{\alpha_{1}, \alpha_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)$ is holomorphic on the sewing domain \mathcal{D}^{ϵ} and is given by

$$
Z_{\alpha_{1}, \alpha_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=e^{i \pi \alpha \cdot \Omega \cdot \alpha} Z_{M}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right),
$$

where $\alpha . \Omega . \alpha=\alpha_{1} \Omega_{11} \alpha_{1}+\alpha_{2} \Omega_{22} \alpha_{2}+2 \alpha_{1} \Omega_{12} \alpha_{2}$.

Genus Two n-Point Correlation Functions

We define a genus two n-pt function for $z_{1}, \ldots, z_{n} \in \Sigma_{1}^{(1)}$ by

$$
Z_{V}^{(2)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n}\right)=\sum_{u} \epsilon^{n} Z_{V}^{(1)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; u, 0 ; \tau_{1}\right) Z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)
$$

(suppressing $\tau_{1}, \tau_{2}, \epsilon$) and similarly for other insertions on $\Sigma_{1}^{(1)}, \Sigma_{2}^{(1)}$.

Theorem (Mason-T)

All Heisenberg VOA M genus two n-pt functions are explicitly known e.g.

$$
Z_{M}^{(2)}(a, x ; a, y) d x d y=\omega^{(2)}(x, y) Z_{M}^{(2)}
$$

This implies the Heisenberg genus two Virasoro 1-point function is

$$
Z_{M}^{(2)}(\widetilde{\omega}, x) d x^{2}=\frac{1}{12} s^{(2)}(x) Z_{M}^{(2)}
$$

for projective connection: $s^{(2)}(x)=6 \lim _{x \rightarrow y}\left(\omega^{(2)}(x, y)-\frac{d x d y}{(x-y)^{2}}\right)$.
This is the genus 2 analogue of $Z_{M}^{(1)}(\widetilde{\omega}, q)=\frac{1}{2} E_{2}(q) Z_{M}^{(1)}(q)$.

Genus Two Zhu Theory - See Tom Gilroy's Talk

We have developed a genus two Zhu theory from which Ward identities follow [Gilroy-T]. The genus 2 analogue of $Z_{V}^{(1)}(\omega, q)=q \frac{\partial}{\partial q} Z_{V}^{(1)}(q)$ is

Theorem (Gilroy-T)

$$
Z_{V}^{(2)}(\widetilde{\omega}, x) d x^{2}=\mathbb{D}_{x} Z_{V}^{(2)}
$$

where $\mathbb{D}_{x}=\mathbb{A}(x) q_{1} \frac{\partial}{\partial q_{1}}+\mathbb{B}(x) q_{2} \frac{\partial}{\partial q_{2}}+\mathbb{C}(x) \epsilon \frac{\partial}{\partial \epsilon}$ for specific local 2-forms \mathbb{A}, \mathbb{B} and \mathbb{C}.

Thus for the Heisenberg VOA M we find $Z_{M}^{(2)}$ satisfies the PDE:

$$
\mathbb{D}_{x} Z_{M}^{(2)}=\frac{1}{12} s^{(2)}(x) Z_{M}^{(2)}
$$

the genus 2 analogue of $q \frac{\partial}{\partial q} Z_{M}^{(1)}(q)=\frac{1}{2} E_{2}(q) Z_{M}^{(1)}(q)$.

Heisenberg Modules

Theorem (Mason-T)

All n-pt functions for a Heisenberg module pair $N_{\alpha_{1}}, N_{\alpha_{2}}$ are known e.g.

$$
Z_{\alpha_{1}, \alpha_{2}}^{(2)}(a, x ; a, y) d x d y=\left[\frac{1}{2} \nu_{\alpha}(x) \nu_{\alpha}(y)+\omega^{(2)}(x, y)\right] Z_{\alpha_{1}, \alpha_{2}}^{(2)},
$$

for 1-form $\nu_{\alpha}(x)=\alpha_{1} \nu_{1}(x)+\alpha_{2} \nu_{2}(x)$,
Thus $Z_{\alpha_{1}, \alpha_{2}}^{(2)}=e^{i \pi \alpha . \Omega . \alpha} Z_{M}^{(2)}$ satisfies the PDE:

$$
\mathbb{D}_{x} Z_{\alpha_{1}, \alpha_{2}}^{(2)}=\left[\frac{1}{2} \nu_{\alpha}(x)^{2}+\frac{1}{12} s^{(2)}(x)\right] Z_{\alpha_{1}, \alpha_{2}}^{(2)} .
$$

It follows that for $i, j=1,2$

$$
\mathbb{D}_{x} \Omega_{i j}=\nu_{i}(x) \nu_{j}(x) \Rightarrow \mathbb{D}_{x} f(\Omega)=\frac{1}{2 \pi i} \sum_{i \leq j} \nu_{i}(x) \nu_{j}(x) \frac{\partial}{\partial \Omega_{i j}} f(\Omega)
$$

for any differentiable function $f(\Omega)$.

Outlook

- What is the geometrical meaning of the coefficient functions and the modular derivative operator \mathbb{D}_{x} in the genus two Zhu reduction formula?
- Prove convergence of partition and n-pt functions as solutions to genus two modular differential equations.
- Generalize Zhu reduction, \mathbb{D}_{x} operator etc to higher genus.
- Schottky problem?

