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Vertex Operator Algebras (VOAs) - Chiral CFT

A Vector Space V . Z-graded V = ⊕n≥0Vn with dimVn <∞.

Vacuum Vector. A distinguished element 1 ∈ V0.

Vertex Operators. For each u ∈ V there exists a vertex operator

Y (u, z) =
∑
n∈Z

u(n)z−n−1, (not physics modes!)

a formal Laurent series in z with modes u(n) ∈ End(V ).

Creativity. Y (u, z)1 = u+O(z) i.e. u(n)1 = δn,−1u, for all n ≥ −1.

Locality. For each u, v ∈ V and sufficiently large integer N

(x− y)N [Y (u, x), Y (v, y)] = 0.
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Conformal Virasoro Vector. A distinguished vector ω ∈ V2 with

Y (ω, z) =
∑
n∈Z

L(n)z−n−2, (physics modes here!)

[L(m), L(n)] = (m− n)L(m+ n) + C
m3 −m

12
δm,−n IdV .

L(0) gives Z-grading: L(0)u = nu for u ∈ Vn for weight wt(u) = n.

Translation. L(−1)1 = 0 and

[L(−1), Y (u, z)] =
∂

∂z
Y (u, z) ≡

∑
n∈Z

(−n− 1)u(n)z−n−2.

Some consequences (amongst many!):

o(u) : Vk → Vk for o(u) ≡ u(wt(u)− 1) (physics zero mode)

[u(m), Y (v, z)] =
∑
i≥0

(
m

i

)
Y (u(i)v, z)zm−i, (a finite sum).
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The Li-Zamolodchikov metric

We can define an invariant symmetric bilinear form 〈 , 〉 on V where

〈Y (u, z)a, b〉 = 〈a, Y †(u, z)b〉,

for adjoint

Y †(u, z) =
∑
n∈Z

u†(n)z−n−1 = Y
(
ezL(1)

(
−z−2

)L(0)
u, z−1

)
.

For quasiprimary u (for which L(1)u = 1) of weight wt(u)

u†(n) = (−1)wt(u)u(−n− 2 wt(u)− 2).

Thus L†(n) = L(−n) and 〈a, b〉 = 0 if wt(a) 6= wt(b).

We consider V for which 〈 , 〉 is unique (with normalization 〈1,1〉 = 1) and
invertible and call such a form the Li-Zamolodchikov or Li-Z metric.
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The Heisenberg Algebra or Bosonic String

Consider a ∈ V1 whose modes obey

[a(m), a(n)] = mδm,−n IdV i.e. [a(m), Y (a, z)] = IdV mz
m−1.

Y (a, z) generates a VOA with vector space V with Fock basis

a(−1)r1a(−2)r2 . . . a(−n)rn1, ri ≥ 0

with a = a(−1)1 and a(n)1 = 0 for all n ≥ 0.
The Virasoro vector is ω = 1

2a(−1)21 for central charge C = 1 with

L(0) =
1

2
a(0)2 +

∑
m>0

a(−m)a(m).

Each Fock vector a(−1)r1 . . . a(−n)rn1 ∈ Vk has Z-grade

k = 1.r1 + 2.r2 + . . .+ n.rn, an integer partition of k

Since a(n)† = −a(−n), Fock vectors form a Li-Z metric orthogonal basis.
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The Genus One Partition and Correlation Functions

Define the genus one partition function (for formal parameter q later
identified as a modular parameter).

Z
(1)
V (q) = TrV

(
qL(0)−C/24

)
=
∑
k≥0

dimVn q
n−C/24.

Formal 1-point and n-point correlation functions are defined by

Z
(1)
V (u, q) = TrV

(
o(u)qL(0)−C/24

)
,

Z
(1)
V (u1, z1; . . . ;un, zn; q) = Z

(1)
V (Y [u1, z1] . . . Y [un, zn]1, q),

for “square-bracket” operators

Y [u, z] =
∑
n∈Z

u[n]z−n−1 = Y (ezL(0)u, ez − 1).

These satisfy a VOA isomorphic to V for Virasoro vector ω̃ = ω − C
241.
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Genus One Zhu Recursion Theory

A deep and effective theory for understanding how modular and elliptic
functions arise for VOAs. Based on locality, Zhu recursion relates n-pt
functions to n− 1-pt functions. Thus

Z
(1)
V (u, x; v, y; q) = TrV

(
o(u)o(v)qL(0)−C/24

)
+
∑
m≥0

1

m!

∂m

∂ym
P1(x− y)Z

(1)
V (u[m]v, q),

for elliptic and modular functions

P1(z) = −
∑

n∈Z,n 6=0

enz

1− qn
=

1

z
−
∑
n≥1

E2n(q)z2n−1,

E2n(q) = − B2n

(2n)!
+

2

(2n− 1)!

∑
r≥0

r2n−1qr

1− qr
,

for Eisenstein series of even weight 2n and Bernoulli nos B2n.
In particular, P2(z) = − ∂

∂zP1(z) = ℘(z) + E2(q), for the Weierstrass
function ℘(z) for z ∈ C and q = e2πiτ for τ ∈ H1.
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Some Ward and Heisenberg Identities

For the Virasoro vector ω̃ = ω − C
241 we find

Z(1)(ω̃, q) = TrV ((L(0)− C

24
)qL(0)−C/24) = q

∂

∂q
Z(1)(q) =

1

2πi

∂

∂τ
Z(1)(q).

For n primary vectors u1, . . . , un, Zhu reduction gives the Ward identity

Z
(1)
V (ω̃, x;u1, z1; . . . ;un, zn; q) = q

∂

∂q
Z

(1)
V (u1, z1; . . . ;un, zn; q)

+
∑

1≤i≤n

[
P1(x− zi)

∂

∂zi
+ wt[ui]

∂

∂zi
P1(x− zi)

]
Z

(1)
V (u1, z1; . . . ;un, zn; q).

For the Heisenberg VOA M , Zhu reduction gives all n-pt functions e.g.

Z
(1)
M (a, x; a, y; q) = P2(x− y)Z

(1)
M (q).

Then Z
(1)
M (ω̃, q) = 1

2 lim
x→y

(
Z

(1)
M (a, x; a, y; q)− Z

(1)
M (q)

(x−y)2

)
= 1

2E2(q)Z
(1)
M (q).

⇒ ODE: q
∂

∂q
Z

(1)
M (q) =

1

2
E2(q)Z

(1)
M (q) i.e. Z

(1)
M (q) = 1/η(q).
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Heisenberg Modules

Zhu reduction also applies to n-pt correlation functions for a VOA module.
For a Heisenberg module Nα (i.e. a(n)w = αδn0w for all w ∈ Nα and n ≥ 0
for some α ∈ C) one finds directly that

Z(1)
α (q) = TrNα(qL(0)−1/24) =

qα
2/2

η(q)
.

The Virasoro 1-pt function is again

Z(1)
α (ω̃, q) = q

∂

∂q
Z(1)
α (q).

On the other hand, Zhu reduction gives

Z(1)
α (a, x; a, y; q) =

(
α2

2
+ P2(x− y)

)
Z(1)
α (q),

so that

Z(1)
α (ω̃, q) =

(
α2

2
+

1

2
E2(q)

)
Z(1)
α (q).

Comparing implies Z
(1)
α (ω̃, q) satisfies an ODE with solution qα

2/2/η(q).
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Genus Two Riemann Surface from Two Sewn Tori
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2

Consider two tori Σ
(1)
a with modular parameters qa = e2πiτa for a = 1, 2.

Identify annular regions shown via the sewing relation

z1z2 = ε, ε ∈ C.

Defines a genus two Riemann surface Σ(2) parameterized by

Dε = {(τ1, τ2, ε) ∈ H1 ×H1 × C : |ε| < 1

4
D(τ1)D(τ2)},

(where D(τ) = 2πmin(m,n)6=(0,0) |m+ nτ |).
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Structures on Σ(2)

For standard homology basis ai, bj with i, j = 1, 2 on a genus 2 Riemann
surface consider the normalized differential of the second kind. This is a
symmetric meromorphic form ω(2)(x, y) obeying

ω(2)(x, y) ∼ dxdy

(x− y)2
,

for local coordinates x ∼ y with
∮
ai
ω(2)(x, ·) = 0.

We can use ω(2) to find a normalized basis of holomorphic 1-forms νi and
the period matrix Ωij :

νi(x) =

∮
bi

ω(2)(x, ·),
∮
aj

νi = δij ,

Ωij =
1

2πi

∮
bi

νi.
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ω(2) on the Sewn Surface Σ(2)

ω(2) can be determined from the genus one normalized differential

ω(1) = P2(x− y)dxdy, P2(z) =
1

z2
+
∑
n≥1

(2n− 1)E2n(q)z2n−2,

for each sewn torus [Yamada, Mason-T].
We define an infinite matrix indexed by k, l ≥ 1

A(k, l, τ, ε) = ε(k+l)/2 1√
kl

(−1)k+1 (k+l−1)!
(k−1)!(l−1)!Ek+l(q)

=


εE2(q) 0

√
3ε2E4(q) 0 · · ·

0 −3ε2E4(q) 0 −5
√

2ε3E6(q) · · ·√
3ε2E4(q) 0 10ε3E6(q) 0 · · ·

0 −5
√

2ε3E6(q) 0 −35ε4E8(q) · · ·
...

...
...

...
. . .

 .
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Convergence of (I − A1A2)
−1 and det(I − A1A2)

Let A1 and A2 denote the matrix for modular parameter τ1 and τ2 resp. and
consider the infinite matrix I −A1A2 where I is the infinite identity matrix.
We define (I −A1A2)−1 and det(I −A1A2) by

(I −A1A2)−1 =
∑
n≥0

(A1A2)n,

log det(I −A1A2) = Tr log(I −A1A2) = −
∑
n≥1

1

n
Tr((A1A2)n).

Theorem (Mason-T)

(I −A1A2)−1 is convergent on the sewing domain Dε.
det(I −A1A2) is non-vanishing and holomorphic on Dε.
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The Genus Two Period Matrix

Theorem (Mason-T)

Ω(τ1, τ2, ε) is holomorphic on Dε and is given by

2πiΩ11 = 2πiτ1 + ε
(
A2(I −A1A2)−1

)
(1, 1),

2πiΩ22 = 2πiτ2 + ε
(
(A1(I −A2A1)−1

)
(1, 1),

2πiΩ12 = −ε ((I −A1A2)−1 (1, 1).

Here (1, 1) refers to the (1, 1)-entry of a matrix.

There are related closed formulas for the normalized differential ω(2)(x, y)
and the holomorphic 1-forms ν1(x) and ν2(x).
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The Genus Two Partition Function

We define the genus two partition function in terms of 1-point functions

Z
(1)
V (u, τa) for all u ∈ V .

Z
(2)
V (τ1, τ2, ε) =

∑
n≥0

εn
∑
u∈V[n]

Z
(1)
V (u, q1)Z

(1)
V (u, q2),

for genus one 1-pt functions Z
(1)
V (u, q1) etc and summing over any V -basis

{u} with LiZ dual basis {u}.

Theorem (Mason-T)

For the rank Heisenberg VOA M we have

Z
(2)
M (τ1, τ2, ε) =

1

η(q1)η(q2)
(det(I −A1A2))−1/2.

Z
(2)
M (τ1, τ2, ε) is holomorphic on Dε.

Z
(2)
M is automorphic wrt SL(2,Z)× SL(2,Z) ⊂ Sp(4,Z) (with an

automorphy factor det(CΩ +D)−1/2 and multiplier system).
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Heisenberg Modules

Let Nα1 , Nα2 be a pair of Heisenberg modules. Define

Z(2)
α1,α2

(τ1, τ2, ε) =
∑
n≥0

εn
∑

u∈M[n]

Z(1)
α1

(u, q1)Z(1)
α2

(u, q2),

for genus one 1-pt functions Z
(1)
α1 (u, q1) etc.

Find a natural generalization of the genus one result Z
(1)
α (q) = qα

2/2Z
(1)
M (q):

Theorem (Mason-T)

Z
(2)
α1,α2(τ1, τ2, ε) is holomorphic on the sewing domain Dε and is given by

Z(2)
α1,α2

(τ1, τ2, ε) = eiπα.Ω.αZ
(2)
M (τ1, τ2, ε),

where α.Ω.α = α1Ω11α1 + α2Ω22α2 + 2α1Ω12α2.
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Genus Two n-Point Correlation Functions

We define a genus two n-pt function for z1, . . . , zn ∈ Σ
(1)
1 by

Z
(2)
V (u1, z1; . . . ;un, zn) =

∑
u

εnZ
(1)
V (u1, z1; . . . ;un, zn;u, 0; τ1)Z

(1)
V (u, τ2),

(suppressing τ1, τ2, ε) and similarly for other insertions on Σ
(1)
1 ,Σ

(1)
2 .

Theorem (Mason-T)

All Heisenberg VOA M genus two n-pt functions are explicitly known e.g.

Z
(2)
M (a, x; a, y)dxdy = ω(2)(x, y)Z

(2)
M .

This implies the Heisenberg genus two Virasoro 1-point function is

Z
(2)
M (ω̃, x)dx2 =

1

12
s(2)(x)Z

(2)
M ,

for projective connection: s(2)(x) = 6 limx→y

(
ω(2)(x, y)− dxdy

(x−y)2

)
.

This is the genus 2 analogue of Z
(1)
M (ω̃, q) = 1

2E2(q)Z
(1)
M (q).
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Genus Two Zhu Theory - See Tom Gilroy’s Talk

We have developed a genus two Zhu theory from which Ward identities

follow [Gilroy-T]. The genus 2 analogue of Z
(1)
V (ω, q) = q ∂∂qZ

(1)
V (q) is

Theorem (Gilroy-T)

Z
(2)
V (ω̃, x)dx2 = DxZ

(2)
V ,

where Dx = A(x)q1
∂
∂q1

+ B(x)q2
∂
∂q2

+ C(x)ε ∂∂ε for specific local 2-forms
A,B and C.

Thus for the Heisenberg VOA M we find Z
(2)
M satisfies the PDE:

DxZ
(2)
M =

1

12
s(2)(x)Z

(2)
M ,

the genus 2 analogue of q ∂∂qZ
(1)
M (q) = 1

2E2(q)Z
(1)
M (q).
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Heisenberg Modules

Theorem (Mason-T)

All n-pt functions for a Heisenberg module pair Nα1 , Nα2 are known e.g.

Z(2)
α1,α2

(a, x; a, y)dxdy =

[
1

2
να(x)να(y) + ω(2)(x, y)

]
Z(2)
α1,α2

,

for 1-form να(x) = α1ν1(x) + α2ν2(x),

Thus Z
(2)
α1,α2 = eiπα.Ω.αZ

(2)
M satisfies the PDE:

DxZ(2)
α1,α2

=

[
1

2
να(x)2 +

1

12
s(2)(x)

]
Z(2)
α1,α2

.

It follows that for i, j = 1, 2

DxΩij = νi(x)νj(x)⇒ Dxf(Ω) =
1

2πi

∑
i≤j

νi(x)νj(x)
∂

∂Ωij
f(Ω).

for any differentiable function f(Ω).
20 / 21



Outlook

What is the geometrical meaning of the coefficient functions and the
modular derivative operator Dx in the genus two Zhu reduction formula?

Prove convergence of partition and n-pt functions as solutions to genus
two modular differential equations.

Generalize Zhu reduction, Dx operator etc to higher genus.

Schottky problem?
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