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Introduction

© Vertex Operator Algebras (VOAs).
@ Genus One Zhu Theory and Ward ldentities.

© The Partition and Correlation Functions for a VOA on a Genus Two
Riemann Surface.

@ Genus Two Zhu Theory and Ward ldentities.

N
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Vertex Operator Algebras (VOAs) - Chiral CFT

A Vector Space V. Z-graded V = &,,>0V,, with dimV;, < 0.
Vacuum Vector. A distinguished element 1 € V.
Vertex Operators. For each u € V there exists a vertex operator
Y(u,z) = Zu(n)z‘”_l, (not physics modes!)
nez

a formal Laurent series in z with modes u(n) € End(V).

Creativity. Y (u,2)1l =u+ O(2) i.e. u(n)l = o, _1u, for all n > —1.

Locality. For each u,v € V' and sufficiently large integer N

(& =)™ Y (u,2), Y (0,9)] = 0.
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Conformal Virasoro Vector. A distinguished vector w € V5 with

z) = Z L(n)z~""2,  (physics modes herel)
nez
5—m
12
L(0) gives Z-grading: L(0)u = nu for u € V,, for weight wt(u) = n.

Translation. L(—1)1 =0 and

[L(m), L(n)] = (m — n)L(m +n) + O™

S Idy .

L1 Y (@.2) = 2 (2) = 3 (n - Du(m)z 2,

ne”L

Some consequences (amongst many!):

o(u): Vi = Vi for o(u) = u(wt(u) — 1) (physics zero mode)

[u(m), Y (v,2)] = Y (W)Y(u(i)v, 2)2™0, (a finite sum).

: 7
i>0



The Li-Zamolodchikov metric

We can define an invariant symmetric bilinear form (,) on V where
(. 2)a, ) = {a, YT (u, 2)b),
for adjoint

Yi(u,z) = Z ul(n)z""1=v (eZL(l) (—272)]“(0) u, z*1> .
nez

For quasiprimary u (for which L(1)u = 1) of weight wt(u)
uf(n) = (1) @u(—n — 2wt(u) — 2).

Thus LT(n) = L(—n) and (a,b) = 0 if wt(a) # wt(b).

We consider V' for which () is unique (with normalization (1,1) = 1) and
invertible and call such a form the Li-Zamolodchikov or Li-Z metric.



The Heisenberg Algebra or Bosonic String

Consider a € V7 whose modes obey
[a(m), a(n)] = My, _n1dy ie. [a(m),Y(a,z)] = Idy mz™"t,
Y (a, z) generates a VOA with vector space V' with Fock basis
a(—1)"a(-2)"...a(—n)™1, >0

with @ = a(—1)1 and a(n)1 = 0 for all n > 0.
The Virasoro vector is w = %a(—1)21 for central charge C' = 1 with

L(0) = %Q(O)Q + 3 a(=m)a(m).

m>0

Each Fock vector a(—1)™ ...a(—n)™1 € Vj has Z-grade
k=1ri4+2r9+...+n.r,, an integer partition of k

Since a(n)! = —a(—n), Fock vectors form a Li-Z metric orthogonal basis.
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The Genus One Partition and Correlation Functions

Define the genus one partition function (for formal parameter ¢ later
identified as a modular parameter).

Z‘(/l)(q) — Try <qL(0)fC/24> _ Zdim vV, qn70/24.
k>0

Formal 1-point and n-point correlation functions are defined by
2 (w, q) = Try (o(u)g*@=C/24),
Z3 (ur, 21s s, 2y @) = 23 (YVug, 2] Y, 201, ),
for “square-bracket” operators

Yu,z] = Zu[n]z_”_l = V(e Oy, e — 1),
nez

These satisfy a VOA isomorphic to V for Virasoro vector w = w — %1.



Genus One Zhu Recursion Theory

A deep and effective theory for understanding how modular and elliptic
functions arise for VOAs. Based on locality, Zhu recursion relates n-pt
functions to n — 1-pt functions. Thus

20w, wiv,530) = ey (o(w)o(v)gH®-/21)

+ 3 28 b — )20 (ufmlo, g),

—
= m! oy™

for elliptic and modular functions

en? 1 B
Pl(Z) = — Z 1 —an :;—ZEQn(q)Z2n 1,
neZ,n#0 4 n>1
Boy, 2 r2n—1qr
E = -
20(0) )l T en— 1) ; 1—q

for Eisenstein series of even weight 2n and Bernoulli nos Bay,,.
In particular, Pa(z) = —%Pl(z) = p(2) + E2(q), for the Weierstrass
function p(z) for z € C and ¢ = €™ for 7 € Hj.



Some Ward and Heisenberg ldentities

For the Virasoro vector w = w — %1 we find

- C _ 0 1 0
Z(l)(wﬂl) = TYV((L(O) - ﬂ)qL(O) 0/24) = Q%Z(l)(Q) = %Ez(l)(@-

For n primary vectors w1, ..., uy,, Zhu reduction gives the Ward identity

1), ~ 8 1
Z‘(/)(w,w;ul,zl; e Un, 2 q) = qaqux(/)(ul,zl; i Un, Zn5 Q)

+ Z [Pl x— zi)=— 8 —|—Wt[u1] 4

5 Py(x — zz)] Z‘(/l)(ul,zl; e Up,y 20 Q)
Zi
1<i<n

For the Heisenberg VOA M, Zhu reduction gives all n-pt functions e.g.
730 (a, w50,y59) = Pa(w — y) 23 (q).

(1)
Then Z) @,q) = % lim zW a,x;a,y;q) — Z“i (qQ) =1F, q)Z(l) q).
M 2 M (z—y) 2 M

Ty
0 1 :
= ODE: g2 (4) = 3 B20) 24 (a) 1o 24 (a) = 1/n(a)



Heisenberg Modules

Zhu reduction also applies to n-pt correlation functions for a VOA module.
For a Heisenberg module N, (i.e. a(n)w = adyow for all w € N, and n > 0
for some a € C) one finds directly that

a?/2
Z(1) q) = Trw, qL(O)—1/24 _ 4 '
o (q) ( ) o)
The Virasoro 1-pt function is again
0
ZW(E.a) = a—7D (a).
o (@,q) 5% (q)
On the other hand, Zhu reduction gives
.
T e N
so that
W) o 1 0
Za)(@,q) = | & +5E2(9) | 237 (a).

Comparing implies Z&l)(@,q) satisfies an ODE with solution qo‘2/2/77(q).
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Genus Two Riemann Surface from Two Sewn Tori

2’1:0 22:0

<
lel/r2 el/m

Consider two tori B\ with modular parameters g, = €% for a = 1, 2.
Identify annular regions shown via the sewing relation
2129 =€, e€C.

Defines a genus two Riemann surface X(?) parameterized by
1
D ={(r1,m2,¢) e Hy xH; x C: |¢] < ZD(TI)D(Tz)},

(where D(1) =27 MiN (17, )£ (0,0) |m + ntl).
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Structures on 12

For standard homology basis a;, b; with 7,5 = 1,2 on a genus 2 Riemann
surface consider the normalized differential of the second kind. This is a
symmetric meromorphic form w(® (x, y) obeying

dxdy
27

B~ p

for local coordinates x ~ y with ¢ w®(z,) =0.
We can use w® to find a normalized basis of holomorphic 1-forms v; and
the period matrix €2;;:

1/1(56) = f W(2)(SC,'), f Vi = 6ij7
bi aj
1

Q.. = —
*J 27 b

%
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w? on the Sewn Surface 2

w® can be determined from the genus one normalized differential

W = Py(x — y)dxdy, Ps(z — + Z n —1)Es,(q)z 2"_2,

n>1

for each sewn torus [Yamada, Mason-T].
We define an infinite matrix indexed by k,1 > 1

Ak, 1, 7,€) = 6(’““)/2%(—1)“1ME1€+1(Q)

% E—DII—1)
[ €Ea(q) 0 V3e2E4(q) 0
0 —3€2F4(q) 0 —5v263E5(q)
— | V32 E4(q) 0 1063 E(q) 0

0 —5v263Eg(q) 0 —35¢4Fs(q)
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Convergence of (I — A1 A;)™! and det(] — A1 Ay)

Let A1 and Ay denote the matrix for modular parameter 74 and 7, resp. and
consider the infinite matrix I — A1 As where [ is the infinite identity matrix.
We define (I — A1 A)~! and det(I — Ay As) by

(I—-A14)~" = Z(AlAz)n,
n>0

1
logdet(I — AjA;) = Trlog(l — AjAg) = - ~Tr((A142)").

n>1

Theorem (Mason-T)

o (I — AjAs)~ Y is convergent on the sewing domain D*.
@ det(I — Ay Ay) is non-vanishing and holomorphic on D¢.
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The Genus Two Period Matrix

Theorem (Mason-T)

Q(11,72,€) is holomorphic on D¢ and is given by

27TZ'QH = 27Ti71 + € (AQ(I — AIAQ)_l) (1, 1),
27Ti922 = 27Ti7'2 +e€ ((Al(I — A2A1)_1) (1, 1),
iy = —e((I —A1A2)"1(1,1).

Here (1,1) refers to the (1, 1)-entry of a matrix.

There are related closed formulas for the normalized differential w(® (z, y)
and the holomorphic 1-forms v (z) and vy(z).
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The Genus Two Partition Function

We define the genus two partition function in terms of 1-point functions
Z‘(})(U,Ta) forallu e V.

Z( ) (71,72, € Z Z Z (u,q1)Z )(U7Q2)7

n>0 UGV'[ n]

for genus one 1-pt functions Z‘(,l) (u,q1) etc and summing over any V-basis
{u} with LiZ dual basis {u}.

Theorem (Mason-T)
For the rank Heisenberg VOA M we have

() Z](\j)(7—177—276) = (det(I - A1A2))_1/2'

n(q1)n(qz)
° Z](\f[)(ﬁ, To, €) is holomorphic on D°¢.

° ZJ(\Z) is automorphic wrt SL(2,7) x SL(2,Z) C Sp(4,Z) (with an
automorphy factor det(CQ + D)~'/2 and multiplier system).
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Heisenberg Modules

Let Ny, No, be a pair of Heisenberg modules. Define

Z) (11,72, € Z Z (u,q1) 282 (W, g2),

n>0  wEM[y

for genus one 1-pt functions Z&ll) (u,q1) etc.
Find a natural generalization of the genus one result Zél)(q) = qO‘Q/QZ](\})(q):

Theorem (Mason-T)

Zc(ﬁ),az (11,72, €) is holomorphic on the sewing domain D¢ and is given by

2&21)7042 (Tb T2, 6) = eiwa.Q.az}(\? (7_17 T2, 6)7

where a.Q.co = a1 Q1101 + asogas + 2a1 Qpo0in.
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Genus Two n-Point Correlation Functions

We define a genus two n-pt function for zq,...,z, € 251) by

Z‘(/?)(ul,zl; e Up, 2n) = Ze”Zl(})(ul,zl; .. .;un,zn;u,O;Tl)Z‘(/l)(ﬂ,Tg),

(suppressing 71, T2, €) and similarly for other insertions on E( ) Eg ),

Theorem (Mason-T)

All Heisenberg VOA M genus two n-pt functions are explicitly known e.g.

Z](VQI) (a,x;a,y)dzdy = w®? (x, y)Z](é).

This implies the Heisenberg genus two Virasoro 1-point function is

Z](V2[) (fu,;v)da:Q = —

for projective connection: s)(x) = 6lim,_,, (w@) (x,y) — (xdfng).

This is the genus 2 analogue of Z](\})(Uu, q) = %EQ(Q)Z](\}[) (q).

18/21



Genus Two Zhu Theory - See Tom Gilroy's Talk

We have developed a genus two Zhu theory from which Ward identities
follow [Gilroy-T]. The genus 2 analogue of Z‘(/)(w q) = qan(l)( ) is

Theorem (Gilroy-T)

Z‘(,2) (@, z)dx* = ]D)ZZ‘(/Q),

where D, = A(x)qla%l + B(:U)qga% + (C(:c)e% for specific local 2-forms
A,B and C.

Thus for the Heisenberg VOA M we find Z](\f,) satisfies the PDE:

1

) (2)
7% (x)Z

D,z = 2

the genus 2 analogue of ¢.2 Z(I)( ) = 2E2(q)Z](\}) (9)-
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Heisenberg Modules

Theorem (Mason-T)

All n-pt functions for a Heisenberg module pair N, , N, are known e.g.

1
Z&?w (a,z;a,y)dzdy = [21/(1(1‘)%@) + W(2)(ffay)} 28 e

for 1-form v, (z) = aivy(x) + agre(x),

Thus Z&21)7a2 = eim'Q'O‘Z](\? satisfies the PDE:

1 1
D28, = |50 + 155(0)] 22,

It follows that for i,j = 1,2

D, = vi(z)vj(z) = Do f(Q) = ~— Z yi(x)yj(x)@ f(Q).

for any differentiable function f(£2).
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@ What is the geometrical meaning of the coefficient functions and the
modular derivative operator D, in the genus two Zhu reduction formula?

@ Prove convergence of partition and n-pt functions as solutions to genus
two modular differential equations.

@ Generalize Zhu reduction, D, operator etc to higher genus.
@ Schottky problem?
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