Supersymmetric Gauge Theories in 3d

Nathan Seiberg IAS

O'Raifeartaigh lecture 2013

Lochlainn O'Raifeartaigh 1933-2000

Supersymmetric Gauge Theories in 3d

Nathan Seiberg IAS

Based on work with Aharony, Intriligator, Razamat, and Willett, to appear

3d SUSY Gauge Theories

- New lessons about dynamics of quantum field theory
- Since they can be obtained by studying a 4d theory on a circle, they reflect properties of 4d theories.
- Applications to condensed matter physics?
- New elements, which are not present in 4d...

New elements in 3d N=2 SUSY

- No asymptotic freedom bound on the number of matter fields.
- U(1) theories can exhibit interesting dynamics, hence we can examine the effect of Fayet-Iliopoulos terms.
- New SUSY coupling constants: Chern-Simons terms, real masses.
- New phases (topological)
- BPS (half-SUSY) particles; e.g. Skyrmions, vortices
- Vortex/monopole operators (analogs of twist fields in 2d and 'tHooft lines in 4d). They cannot be written in a simple local fashion.

Duality in 4d N=1 SUSY Gauge Theory

Two dual theories are related by RG flow

- Two asymptotically free theories flow to the same IR fixed point
- An asymptotically free theory in the UV flows to an IR free field theory.

Characteristic example

- Electric theory: $SU(N_c)$ with N_f quarks Q, \tilde{Q}
- Magnetic theory: $SU(N_f N_c)$ with N_f quarks q, \tilde{q} and singlets M (mesons) with a superpotential

$$W = Mq\tilde{q}$$

Lessons

- Nontrivial mixing of flavor and gauge
 - The dual gauge group depends on the flavor
- This behavior is generic in 4d supersymmetric gauge theories.
- Composite gauge fields
 - Gauge symmetry can be emergent
 - Gauge symmetry is not fundamental

Going to 3d

- Reducing the two dual Lagrangians to 3d does not lead to dual theories.
 - Perhaps it is not surprising radius going to zero does not commute with IR limit in 4d
- Aharony, Giveon and Kutasov conjectured some dual pairs. They are similar (but not identical) to 4d dual pairs.
 - Until recently, only a few tests main motivation was from string theory (brane constructions).
 - New non-trivial tests involving the S³ and the S²xS¹ partition functions [Kapustin, Willett and Yaakov, ...]
 - Some generalizations to different gauge groups

Duality in 3d

Questions:

- Why doesn't the simple reduction from 4d work?
- Why are the known *3d* dualities so similar to the *4d* dualities?
- Are there additional dual pairs?
- What is the underlying reason for duality?

The Coulomb branch

- A 3d N=2 gauge multiplet includes a scalar σ. When the theory is obtained by compactifying a theory on a circle it originates from A₄ (a Wilson line around the circle).
- The photon is dual to a compact scalar *a*.
- $X = e^{\sigma/g_3^2 + ia}$ (+ quantum corrections) is a chiral superfield. Its vev parameterizes a Coulomb branch.

Monopole operators

Microscopically X is defined as a monopole operator [Kapustin et al].

• A monopole operator leads to a singularity in F $dF = 2\pi \delta^{(3)}(x)$

(equivalently, remove a ball around x = 0 and put one unit of flux through its surface).

• In SUSY **F** is in a linear superfield $\Sigma = D\bar{D}V$ and the monopole operator is defined through $\bar{D}^2\Sigma = 2\pi\delta^{(3)}(x)\theta^2$; $D^2\Sigma = 0$

Hence

Monopole operators

• It is easy to see that in the dual variables $\bar{D}^2\Sigma = 2\pi\delta^{(3)}(x)\theta^2$

has the same effect in the functional integral as the insertion of $V = \sigma/a_2^2 + ia$

$$A = e^{-r s s + s s + s s + s s + s s + s s + s s + s s + s s + s s + s$$

• Semiclassically, this insertion sets

and thus pushes the scalar σ to infinity.

• This explains why the chiral operator X is associated with the Coulomb branch.

 $\sigma \sim \frac{1}{|x|}$

Monopole operators vs. vortices

A BPS particle (vortex) exists at a point in space. It needs a central charge Z (say Z > 0). It is annihilated by Q₋ and its conjugate Q

₊.
2d rep: Q

₋ |a > = 0

 $|b> \sim Q_+ |a>$

- A BPS (monopole) operators X is a chiral operator (at a point in spacetime). It is annihilated by \bar{Q}_{\pm} .
- X|0 > is not a BPS particle. But if an appropriate BPS state |a > exists, it can be created by projecting on the lowest energy state

$$|a\rangle = \lim_{\tau \to \infty} e^{-(H-Z)\tau} X|0\rangle$$

3d SU(2) gauge theory [Affleck, Harvey, Witten]

- Semiclassically, a Coulomb branch of vacua parameterized by $X \sim e^{\sigma/g_3^2 + ia}$
- The 4d monopole is like a 3d instanton and following Polyakov it leads to a superpotential

$$W = \frac{1}{X}$$

- This superpotential is exact because of an R-symmetry. (Recall, no axial anomaly in *3d*.)
- It leads to runaway no vacuum.

4d SU(2) gauge theory on a circle

- Semiclassically, the Coulomb branch of vacua is compact $A_4 = \sigma \sim -\sigma \sim \sigma + \frac{2}{R}$. It is still parameterized by a chiral superfield X.
- Global symmetry $X o rac{1}{\eta X}$

 $\eta=\Lambda^6\sim e^{-\frac{8\pi^2}{g_4^2}+i\theta}$ (This is the 4d instanton

factor.) It disappears in the *3d* limit.

• It relates the two points in the moduli space with unbroken *SU(2)*: X = 0, ∞ ($\sigma = 0$, $\frac{1}{R}$).

4d SU(2) gauge theory on a circle

 $W = \frac{1}{X} + \eta X$

• Non-perturbatively [NS, Witten]

4d monopole acting as a 3d instanton

4d instanton $\eta = \Lambda^6$ disappears in the 3d limit. Breaks axial U(1).

- This superpotential is exact (holomorphy, right limits at zero and infinity, and global symmetry).
- 2 vacua, as in 4d. They run to infinity in the 3d limit $\eta \rightarrow 0$.

4d SUSY gauge theory on a circle

Typically in 4d an anomalous (axial) U(1) symmetry. 4d instantons break this U(1) symmetry.

This is true also with a finite size circle – instantons generate a term in the effective superpotential

 $W = \eta X$

- X is a monopole operator. - $\eta \sim e^{-8\pi^2/g_4^2 + i\theta}$ is the 4d instanton factor.
- $-\eta$ goes to zero in the *3d* limit.
- This is the leading order term that breaks the axial
 U(1) symmetry in the 3d theory.

Compactify a 4d dual pair

In order to break the anomalous symmetries in the 3d theories we should add to the 3d Lagrangian of the electric theory ηX and to the 3d Lagrangian of the magnetic theory $\tilde{\eta}\tilde{X}$.

- This leads to two dual theories in *3d*.
- All the tests of duality in *3d* are satisfied.
- One might not like the presence of the monopole operators in the Lagrangians.

Example

• Electric theory: $SU(N_c)$ with N_f quarks Q, \tilde{Q} with a superpotential

 $W = \eta X$

• Magnetic theory: $SU(N_f - N_c)$ with N_f quarks q, \tilde{q} and singlets M (mesons) with a superpotential

$$W = Mq\tilde{q} + \tilde{\eta}\tilde{X}$$
$$\eta\tilde{\eta} \sim 1$$

Deforming the dual pair by relevant operators

- We can deform the dual pair with all the relevant operators present in *4d*.
 - This preserves the duality
 - Given our construction, this fact is trivial and does not lead to new dualities.
- New relevant operators real masses for the quarks.
 They lead to new interesting dual pairs.

Example 1: Real mass for one of the flavors – the electric theory

- Start with N_f + 1 flavors and turn on real mass for one of the flavors (opposite signs for the quarks and antiquarks).
- The low energy electric theory is SU(N_c) with N_f quarks. There is no monopole operator in the Lagrangian (no η-term); W=0.
- This is standard SQCD.

Example 1: Real mass for one of the flavors – the magnetic theory

- The magnetic gauge group is Higgsed: $SU(N_f + 1 - N_c) \rightarrow U(N_f - N_c)$
- The light elementary matter fields are:
 - $-N_f$ dual quarks, q, \tilde{q}
 - $-SU(N_f N_c)$ singlets b, \tilde{b} with U(1) charges $\pm (N_f N_c)$
 - Neutral fields M (mesons) and X (monopole)

$$W = Mq\tilde{q} + Xb\tilde{b} + \tilde{X}^+ + \tilde{X}^-$$

 \tilde{X}^{\pm} are monopole operators of $U(N_f - N_c)$.

Example 2: Real masses for all the antiquarks

- The electric theory: SU(N_c) with N_f fundamentals Q.
 No additional fields, W=0.
- Depending on the signs of the masses there might or might not be a Chern-Simons term.
- For even N_f we can let $N_f/2$ of the anti-quarks have positive real mass and $N_f/2$ of them have negative real mass. Then there is no Chern-Simons term.
- The magnetic theory: SU(N_f N_c) with N_f fundamentals q. No additional fields, W=0.

Conclusions

- A 4d dual pair leads to a 3d dual pair (with monopole operators in the Lagrangians).
- Turning on real masses, we find many more dual pairs:
 - We reproduced all known examples (some still in progress)
 - Many new dualities (with or without monopole operators in the electric or magnetic Lagrangians)
- This explains:
 - Why naïve dimensional reduction of the dual pair does not work
 - Why the known examples are similar to the 4d examples.

Conclusions

- This two step process (reduce with a monopole operator and flow down) has to work. It follows from the assumption of 4d duality.
- Alternatively, the fact that it works leads to new tests of 4d duality.
- It seems that all *3d* dualities follow from *4d* dualities.
- More generally, 3d dynamics is part of 4d dynamics.
- It raises many new questions...

Lochlainn O'Raifeartaigh 1933-2000