TESTING THE STANDARD MODEL IN THE FORWARD REGION AT THE LHC

Ronan McNulty (UCD Dublin)

Irish Quantum Foundations, Castletown House, 3,4th May 2013

<u>Outline</u>

- Theory: The Standard Model
- Experiment: LHCb detector
- 1 Electroweak tests using $W \rightarrow \mu \nu$, Z $\rightarrow \mu \mu$; probing the proton structure
- 2 Electroweak tests using Z→ττ; sensitivity to Higgs
- 3 Test EM & QCD with exclusive production of dimuons, J/ψ and $\chi_{c.}$

	Analysis	Paper	Luminosity
	W→µv	JHEP 06 (2012) 058	37pb ⁻¹
-	→µµ	CERN-LHCb-CONF-2013-007	1fb ⁻¹
	→ττ	JHEP 1301 (2013) 111.	1fb ⁻¹
	iggs	arXiv:1304.2591	1fb ⁻¹
	xclusive J/ ψ	JPG 40 (2013) 045001	37pb ⁻¹
	Exclusive χ_c	CERN-LHCb-CONF-2011-022	37pb ⁻¹

This is what we want to test....

$$\begin{split} \mathcal{L} &= \sum_{f} (\bar{\Psi}_{f} (i\gamma^{\mu} \partial \mu - m_{f}) \Psi_{f} - eQ_{f} \bar{\Psi}_{f} \gamma^{\mu} \Psi_{f} A_{\mu}) + \\ + \frac{g}{\sqrt{2}} \sum_{i} (\bar{a}_{L}^{i} \gamma^{\mu} b_{L}^{i} W_{\mu}^{+} + \bar{b}_{L}^{i} \gamma^{\mu} a_{L}^{i} W_{\mu}^{-}) + \frac{g}{2c_{w}} \sum_{f} \bar{\Psi}_{f} \gamma^{\mu} (I_{f}^{3} - 2s_{w}^{2} Q_{f} - I_{f}^{3} \gamma_{5}) \Psi_{f} Z_{\mu} + \\ &- \frac{1}{4} |\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ie(W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} - \frac{1}{2} |\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+} + \\ &- ie(W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) + ig' c_{w} (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}|^{2} + \\ &- \frac{1}{4} |\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu} + ig' c_{w} (W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} + \\ &- \frac{1}{2} M_{\eta}^{2} \eta^{2} - \frac{g M_{\eta}^{2}}{8M_{W}} \eta^{3} - \frac{g'^{2} M_{\eta}^{2}}{32M_{W}} \eta^{4} + |M_{W} W_{\mu}^{+} + \frac{g}{2} \eta W_{\mu}^{+}|^{2} + \\ &+ \frac{1}{2} |\partial_{\mu} \eta + i M_{Z} Z_{\mu} + \frac{ig}{2c_{w}} \eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2} \frac{m_{f}}{M_{W}} \bar{\Psi}_{f} \Psi_{f} \eta \\ &- g G_{\mu}^{a} \bar{\psi}_{i} \gamma^{\mu} T_{ij}^{a} \psi_{j} - \frac{1}{4} G_{\mu\nu}^{a} G_{\mu}^{\mu\nu} \end{split}$$

fermion mass

$$\begin{split} & \int_{propagator} fermion \\ propagator \\ mass \\ \mathcal{L} &= \sum_{f} (\bar{\Psi}_{f}(i\gamma^{\mu}\partial\mu - (m_{f}))\Psi_{f} - eQ_{f}\bar{\Psi}_{f}\gamma^{\mu}\Psi_{f}A_{\mu}) + \\ & + \frac{g}{\sqrt{2}} \sum_{i} (\bar{a}_{L}^{i}\gamma^{\mu}b_{L}^{i}W_{\mu}^{+} + \bar{b}_{L}^{i}\gamma^{\mu}a_{L}^{i}W_{\mu}^{-}) + \frac{g}{2c_{w}} \sum_{f} \bar{\Psi}_{f}\gamma^{\mu}(I_{f}^{3} - 2s_{w}^{2}Q_{f} - I_{f}^{3}\gamma_{5})\Psi_{f}Z_{\mu} + \\ & - \frac{1}{4}|\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}| - ie(W_{\mu}^{-}W_{\nu}^{+} - W_{\mu}^{+}W_{\nu}^{-})|^{2} - \frac{1}{2}|\partial_{\mu}W_{\nu}^{+} - \partial_{\nu}W_{\mu}^{+} + W \text{ propagator} \\ photon \text{ prop. } -ie(W_{\mu}^{+}A_{\nu} - W_{\nu}^{+}A_{\mu}) + ig'c_{w}(W_{\mu}^{+}Z_{\nu} - W_{\nu}^{+}Z_{\mu}|^{2} + \\ \mathbf{Z} \text{ propagator } -\frac{1}{4}|\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}| + ig'c_{w}(W_{\mu}^{-}W_{\nu}^{+} - W_{\mu}^{+}W_{\nu}^{-})|^{2} + \\ \\ & \text{Higgs } (\frac{1}{2}M_{\eta}^{2}\eta^{2}) - \frac{gM_{\eta}^{2}}{8M_{W}}\eta^{3} - \frac{g'^{2}M_{\eta}^{2}}{32M_{W}}\eta^{4} + (M_{W}W_{\mu}^{+}) + \frac{g}{2}\eta W_{\mu}^{+}|^{2} + \\ \\ & \text{Higgs prop. } + \frac{1}{2}|\partial_{\mu}\eta + (M_{Z}Z_{\mu}) + \frac{ig}{2c_{w}}\eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2}\frac{m_{f}}{M_{W}}\bar{\Psi}_{f}\Psi_{f}\eta \\ \\ & \mathbf{Z} \text{ mass } - gG_{\mu}^{a}\psi_{i}\gamma^{\mu}T_{ij}^{a}\psi_{j} - (\frac{1}{4}G_{\mu\nu}^{a}G_{\mu\nu}^{\mu}) \\ & \text{ gluon propagator } \end{aligned}$$

ATLAS and CMS surround the interaction region

The LHCb detector

Fully instrumented within $1.9 \le \eta \le 4.9$

- -

. .

10_

Complementarity of LHC detectors

1. Electroweak tests using $W \rightarrow \mu\nu$, $Z \rightarrow \mu\mu$; probing the proton structure

Theory v Experiment at the LHC

- Test the Standard Model at the highest energies. W/Z theory known to 1%
- Constrain parton distribution functions.
- Test QCD of particular interest in regions with very soft gluons

ATLAS & CMS:

6

4

Collision between two partons having similar momentum fractions.

PDFs either already measured by HERA or Tevatron, or requiring modest extrapolation through DGLAP.

Collision between one well understood parton and one unknown or large DGLAP evolved parton.

ATLAS & CMS:

6

Collision between two partons having similar momentum fractions.

PDFs either already measured by HERA or Tevatron, or requiring modest extrapolation through DGLAP.

Collision between one well understood parton and one unknown or large DGLAP evolved parton.

Potential to go to very low x, where PDFs essentially unknown

Pre-LHC precision on W,Z cross-sections

W and Z production in the forward region

Experimentally: $\sigma = N/L$ Count number of events: $Z \rightarrow \mu\mu$, $W \rightarrow \mu\nu$

The LHCb detector

Fully instrumented within $1.9 \le \eta \le 4.9$

- -

. .

25

First Z candidate

Z cross-section measurement

27

 $\sigma =$

 \underline{pN}

εL

Efficiencies for W and Z analysis found from tag-and-probe

Purity of W selection

W charge asymmetry

Comparison to CMS

32

Testing the theory

33

Z differential cross-section as fn of rapidity and transverse momentum

compared to various PDF sets and different generators

1. Summary

Electroweak data from LHC is in good agreement with Standard Model Predictions.

 PDFs constrained and thus predict other processes (e.g. Higgs) with greater precision.

2. Electroweak tests using Z→ττ; sensitivity to Higgs

Are these couplings the same?

Could something else produce $\tau\tau$?
Z->TT signal and background

Trigger and selection

• triggers

- muon $(p_{\rm T} > 15 \text{ GeV})$
- electron $(p_{\rm T} > 10 \text{ GeV})$
- muon
 - muon track
- electron
 - large $E_{\rm ECAL}/p$
 - small $E_{
 m HCAL}/p$
- hadron (single-pronged)
 - small $E_{\rm ECAL}/p$
 - large $E_{\rm HCAL}/p$

Ronan McNulty, Irish Quantum Foundations

Comparison of Z->µµ and Z->TT results

Reinterpretation in terms of Higgs

Higgs boson in the forward region

Model independent limits

SUSY limits (mhmax scenarios)

2. Summary

- □ Lepton universality holds
- □ SUSY parameter space severely constrained.
- With more statistics we are sensitive to Higgs production in the forward region.

3. Exclusive J/ ψ and ψ (2S), χ_c and $\mu\mu$

OPEN ACCESS	
IOP PUBLISHING	JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS
J. Phys. G: Nucl. Part. Phys. 40 (2013) 045001 (17pp)	doi:10.1088/0954-3899/40/4/045001

Exclusive J/ψ and $\psi(2S)$ production in *pp* collisions at $\sqrt{s} = 7$ TeV

Results based on 37pb⁻¹ of data taken in 2010

Physics of the Vacuum

It's QCD – but not as we normally see it. It's colour-free

It's QCD – but not as we normally see it. It's colour-free

47

Physics of the Vacuum

It's QCD – but not as we normally see it. It's colour-free

It's QCD – but not as we normally see it. It's colour-free

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

Elastic diffractive: clean environment to study vacuum, and in particular, transition between soft and hard pomeron.

Examples of dependence of Jpsi cross-section on PDF (left) and extraction of gluon PDF (right) from Martin, Nockles, Ryskin, Teubner, arXiv:0709.4406v1

The LHCb detector

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_{\mu} > 3 \text{ GeV}$, $pt_{\mu} > 0.4 \text{ GeV}$, $m_{\mu\mu} > 2.5 \text{ GeV}$ Low multiplicity required. Restricts to single-interaction collisions

VELO sub-detector measures particle positions to 5um

UCD helped build, commission and operate the VELO

Graphical Representation

Effect of rapidity gap requirement on muon triggered events

Central exclusive di-muon signals

SuperChic: L. Harland-Lang, V. Khoze, M. Ryskin, W. Stirling, EPJ.C65 (2010) 433-448 Starlight: S.R. Klein & J. Nystrand, PRL 92 (2004) 142003. Ronan McNulty, Irish Quantum Foundations

Before and after requiring precisely two tracks

Non-resonant background very small

Distributions are not background-subtracted. 37pb-1 of data: 1492 J/ ψ and 40 ψ (2s)

Cross-section measurement

Feed-down backgrounds

Inelastic background

Characterise p_T spectrum of background using shapes with 3-8 tracks and extrapolate to 2 track case.

64

Inelastic background

Signal shape

Estimated from Superchic using exp(- b p_T^2) (arXiv: 0909.4748) Take b from HERA data. Extrapolate to LHCb energies to get b= 6.1 +/- 0.3 GeV⁻² Crosscheck: Fit to spectrum below with b free gives b = 5.8 +/- 1 GeV⁻²

LHCb compared to theory & experiment

Predictions	$\sigma_{pp \to J/\psi \ (\to \mu^+ \mu^-)}$	$\sigma_{pp \rightarrow \psi(2S)(\rightarrow \mu^+ \mu^-)}$
Gonçalves and Machado	275	
STARLIGHT	292	6.1
Motyka and Watt	334	
SUPERCHIC ^a	396	
Schäfer and Szczurek	710	17
LHCb measured value	$307\pm21\pm36$	$7.8\pm1.3\pm1.0$

^a SUPERCHIC simulation does not include a gap survival factor.

All predictions (bar Schaefer&Szcaurek) have similar approach and give similar results and are consistent with our data.

Ronan McNulty, Irish Quantum Foundations

66

LHCb c/s is HERA c/s weighted by photon spectrum + gap survival factor (r) $\frac{d\sigma}{dy}_{pp \to pVp} = r(y) \left[k_+ \frac{dn}{dk_+} \sigma_{\gamma p \to Vp}(W_+) + k_- \frac{dn}{dk_-} \sigma_{\gamma p \to Vp}(W_-) \right]_{t}$

$$k_{\pm} \approx (m_V/2) \exp(\pm |y|),$$

LHCb differential data fitted assuming power law dependence $\sigma(W) = aW^{\delta}$

Ronan McNulty, Irish Quantum Foundations

LHCb compared to theory & experiment

Other ways to fill the vacuum with muons

3. Summary

- □ Nature of the pomeron investigated
- Sensitive to gluon PDF
- Prospect for new phenomena in QCD
 - saturation
 - □ odderon (3-bound gluons)

72

Conclusions

- Rich variety of physics available from LHC
- Standard Model has so far resisted all our attempts to break it!
- Precision physics and new energy regimes are key to improved understanding
- Irish physics very much involved at the energy frontier.

Ronan McNulty, Irish Quantum Foundations

74

Exclusive pseudo-vector production

 $\sigma_{\chi_{c0} \rightarrow \mu + \mu} = 9.3 + / - 2.2 + / - 3.5 + / - 1.8 \text{ pb}$ $\sigma_{\chi_{c1} \rightarrow \mu + \mu} = 16.4 + / - 5.3 + / - 5.8 + / - 3.2 \text{ pb}$ $\sigma_{\chi_{c2} \rightarrow \mu + \mu} = 28.0 + / - 5.4 + / - 9.7 + / - 5.4 \text{ pb}$

LHCb preliminary results with 2010 data

BR(χc0->J/ψγ)=1.2% BR(χc1->J/ψγ)=34.4% BR(χc2->J/ψγ)=19.5%

Dominance of Xc0 is confirmed.

Experimentally difficult to separate three resonances and determine non-resonant background for each.