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No physics

I don’t know any physics, so I won’t be able to connect this
mathematical story to physics much.



Why G2 metrics?

A G2-manifold is a 7-dimensional manifold with a metric of
Euclidean signature which admits a parallel spinor, and is not (even
locally) a product metric.



Why a parallel spinor?

A parallel spinor is an essential ingredient in some physical models
in order to allow N = 1 SUSY to survive in an effective field theory
after compactifying 7-dimensions.



To be explained

1926 Élie Cartan holonomy group

1955 Marcel Berger attempted classification

1987 Robert Bryant G2 manifolds exist (perhaps not compact)

1989 Bryant & Salamon complete G2 manifolds exist (thin necks)

1992 Bryant & Altschuler try to melt metrics “close to G2” into G2.

1992 Dominic Joyce compact G2 manifolds exist.

2012 Karigiannis & Lotay Conical singularities exist



Why are they called G2?

To first order, any Riemannian metric is flat (curvature is 2nd
order). Pick a point, and look in local coordinates at the linear
transformations (i.e. transformations at first order) preserving the
metric and the point. These are just the rotations.



Why are they called G2?

But if you also want to preserve a spinor, you get a smaller group.
In 6-dimensions, you get SU(3), and a metric with parallel spinor is
a CY metric. In 7-dimensions, you get G2, a 14-dimensional
exceptional simple Lie group.



Why are they called G2?

A metric on a 7-dimensional manifold is a G2-metric if it has a
parallel spinor, and is not locally a product metric. No explicit
compact examples are known.



What is G2?

For each vertex in this drawing,
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take a variable. Following arrows along a straight edge or around
the circle, if you hit three variables a, b, c then let ab = c . Also
add in all relations a2 = −1. This defines a noncommutative,
nonassociative real algebra, called the octonions or octaves. The
group of symmetries of this algebra is G2.



First examples

Bryant proved that G2-metrics exist, but just in “little pieces”,
maybe not compact or maybe not even complete. Write the
problem as a huge system of partial differential equations, and
prove the existence of local solutions using big machinery.



Complete examples

Bryant and Salamon constructed explicit examples; thin necks
which look like smoothed out cones over S3, S4 or CP2. Method:
look for symmetries, and reduce to ODEs. Need some reason why
there might be such a spinor, topologically for example, and that
gives some insight into why S3, S4 and CP2.



Compact ones exist

Joyce: any G2-metric has a finite dimensional smooth deformation
space.
Joyce: take a flat 7-dimensional torus. Quotient by a finite group
action. Quotient space is not smooth. Deform away the
singularities, cleverly. At some moment during the deformation,
you can perturb the metric to get a G2-metric.
Choose different finite group actions on 7-dimensional tori:
hundreds of different examples, with different topology.



Melting

Heat flows have been powerful in recent mathematics. Make some
PDE which looks like a nonlinear heat equation, and understand
how its singularities look.



Melting

There are many flows we can apply to metrics and spinors to try to
flow both into a metric with parallel spinor. Several flows have
short time existence of solutions, but we know nothing about long
time behaviour. Bad news: all explicit examples have been shown
develop singularities in the flow. Solitons for the singularities are
not classified. A few explicit solitons are known.



Singularities

“String theory”: compactification of M-theory on a G2-manifold
gives chiral parity, unless perhaps the G2-manifold has a conical
singularity.
The singularities that led mathematicians away from this subject
are now seen as good.



Singularities

Karigiannis & Lotay: finite dimensional smooth moduli space of
conical singularity G2-metrics on any compact space. Can
sometimes remove these singularities and paste in something
smooth (string theory?).



Singularities

Link on a point singularity is a “nearly Kähler” 6-manifold. A few
examples known; not classified.



Things inside

Infinitesimal picture: the algebra ab = c we constructed is not
associative, but contains many associative 3-planes. Big picture:
any G2-metric will have a family of 3-dimensional absolutely
minimal submanifolds, called associative, with these tangent
planes. These are apparently analogues of the Riemann surfaces in
string theory compactified on a CY manifold.
The same story happens with 4-dimensional objects, called
coassociative submanifolds.



Things inside

“String theory”: when you compactify M-theory on a G2-manifold,
to get nonabelian YM fields in the effective theory, you need
associative singularities. Compact G2-objects with such
singularities are not known to exist.
Examples of associatives and coassociatives are known on some
compact G2 manifolds.



Open problem

What does M-theory suggest we should prove about G2-metrics?


