Irish Quantum Foundations

Modular differential equations in CFT

NUIM May 03, 2013
\section*{Marianne Leitner (TCD \& DIAS)}

The characters of the $(2,5)$ minimal model in CFT satisfy an ordinary differential equation which is modular. We discuss the corresponding equations in other minimal models and indicate how to generalise them to higher genus Riemann surfaces.

A CFT is soved once all of its N-point functions are known.
Aim: Determine the N-point functions

$$
\left\langle\varphi_{1}\left(x_{1}\right) \ldots \varphi_{N}\left(x_{N}\right)\right\rangle
$$

of holomorphic fields of RCFT on arbitrary Riemann surfaces.

$$
\begin{aligned}
& g=0 \text { is easy } \\
& g=1 \text { much is known }
\end{aligned}
$$

For $g>1$, working with the analytic coordinate on \mathbb{H}^{+} / Γ is difficult (problem of classical geometry, e.g. Maskit 1999) - not my concern.

Recent progress to $g=2$ by sewing tori (Mason, Tuite, Zuevsky)
Suggestion: Use algebraic coordinates.
Consider the N-point functions of the Virasoro field T on a hyperelliptic genus g Riemann surface

$$
\begin{aligned}
& X_{g}: \quad y^{2}=p(x), \quad n=\operatorname{deg} p=2 g+1 \\
& x \text { varies in } \mathbb{P}_{\mathbb{C}}^{1}, \quad y \text { defines a ramified double cover. }
\end{aligned}
$$

For the (μ, v) minimal model, $\langle T T \ldots\rangle$ can be determined up to a finite set of parameters.

Theorem 1. (M.L. 2012) For the $(2,5)$ minimal model on

$$
X_{g=2}: \quad y^{2}=p(x),
$$

we have

$$
\langle T(x)\rangle=\frac{c}{32} \frac{\left[p^{\prime}\right]^{2}}{p^{2}}\langle\boldsymbol{1}\rangle+\frac{A_{0} x^{3}+A_{1} x^{2}+A_{2} x+A_{3}}{4 p} .
$$

There are exactly 4 parameters in

$$
\langle T T\rangle \text { and }\langle T T T\rangle,
$$

given by $\langle\boldsymbol{1}\rangle$ and A_{1}, A_{2}, A_{3}. All other constants (including A_{0}) are known.
$\langle\mathbf{1}\rangle$ and A_{1}, A_{2}, A_{3} depend on the moduli of X_{2}. Their dependence is governed by ODEs which I have not addressed in previous talks.

What I talk about today is joint work in progress with W. Nahm.

In RQFTs, one has a system of differential equations which close up.
Example: $(2,5)$ minimal model for $g=1$

$$
\begin{equation*}
\frac{d}{d \tau}\langle\mathbf{1}\rangle=\frac{1}{2 \pi i} \oint\langle T(z)\rangle d z=\frac{1}{2 \pi i}\langle\mathbf{T}\rangle . \tag{1}
\end{equation*}
$$

Here the contour integral is along the real period, and $\oint d z=1$.

$$
\begin{equation*}
2 \pi i \frac{d}{d \tau}\langle\mathbf{T}\rangle=\oint\langle T(w) T(z)\rangle d z=-4 G_{2}\langle\mathbf{T}\rangle+\underbrace{\frac{22}{5} G_{4}\langle\mathbf{1}\rangle}_{\text {minim. model }} . \tag{2}
\end{equation*}
$$

(Here $G_{2} \sim \pi^{2} E_{2}$ resp. $G_{4} \sim \pi^{4} E_{4}$ (quasi)modular Eisenstein series.)
1st order ODEs (1) \& (2) combine to give the 2nd order ODE (Kaneko, Nagatomo, Sakai 2012)
$\mathfrak{D}_{2} \circ \mathfrak{D}_{0}\langle\mathbf{1}\rangle=\frac{11}{3600} E_{4}\langle\mathbf{1}\rangle, \quad \mathfrak{D}_{2 \ell}:=\frac{1}{2 \pi i} \frac{d}{d \tau}-\frac{\ell}{6} E_{2} \quad$ (Serre derivative).
The two solutions are the well-known Rogers-Ramanujan partition functions.

The two solutions to $\mathfrak{D}_{2} \circ \mathfrak{D}_{0}\langle\mathbf{1}\rangle=\frac{11}{3600} E_{4}\langle\mathbf{1}\rangle$ are the Rogers-Ramanujan partition functions.

$$
\begin{aligned}
& \langle\mathbf{1}\rangle_{1}=q^{\frac{11}{60}} \sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q)_{n}}=q^{\frac{11}{60}}+\ldots \\
& \langle\mathbf{1}\rangle_{2}=q^{-\frac{1}{60}} \sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=q^{-\frac{1}{60}}+\ldots
\end{aligned}
$$

Here $(q)_{n}$ is the q-Pochhammer symbol

$$
(q)_{n}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n-1}\right)\left(1-q^{n}\right) .
$$

A different formula for the Teichmüller variation

We define a deformation of the hyperelliptic Riemann surface

$$
X_{g}: \quad y^{2}=p(x), n=\operatorname{deg} p,
$$

with roots X_{j}, by

$$
X_{j} \mapsto X_{j}+\xi_{j}, \quad j=1, \ldots, n
$$

where $\xi_{j}=d X_{j}$. Let Φ be a holomorphic field. We have

$$
\begin{equation*}
d\langle\Phi\rangle=\sum_{j=1}^{n}\left(\frac{1}{2 \pi i} \oint_{\gamma_{j}}\langle T(z) \Phi\rangle d z\right) d X_{j} \tag{3}
\end{equation*}
$$

where γ_{j} is a closed path around X_{j}.

The case $g=1$ in algebraic coordinates

$$
\langle T(x)\rangle=\frac{c}{32} \frac{\left[p^{\prime}\right]^{2}}{p^{2}}\langle\mathbf{1}\rangle+\frac{A_{0} x+A_{1}}{4 p} .
$$

(Only $A_{1} \propto\langle\mathbf{1}\rangle$ is unknown.) Using our new variation formula,
Theorem 2. (M.L. 2013) Let

$$
p=4\left(x-X_{1}\right)\left(x-X_{2}\right)\left(x-X_{3}\right)
$$

We define a deformation of the Riemann surface by

$$
X_{j} \mapsto X_{j}+\xi_{j}, \quad j=1,2,3
$$

where $\xi_{i}=d X_{i}$. Assuming $\sum_{i=1}^{3} X_{i}=0$, we have

$$
\begin{aligned}
d\langle\boldsymbol{l}\rangle & =\frac{c}{8}\langle\boldsymbol{l}\rangle\left(\frac{X_{1} \xi_{1}}{\left(X_{1}-X_{2}\right)\left(X_{3}-X_{1}\right)}+\text { cyclic }\right) \\
& -\frac{1}{8} A_{1}\left(\frac{\xi_{1}}{\left(X_{1}-X_{2}\right)\left(X_{3}-X_{1}\right)}+\text { cyclic }\right) .
\end{aligned}
$$

The ODE for $\langle T(x)\rangle$ is given by

$$
\begin{aligned}
& \left(d+\left(\frac{\xi_{1} X_{1}}{\left(X_{1}-X_{2}\right)\left(X_{3}-X_{1}\right)}+\text { cyclic }\right)\right) \frac{\langle\mathbf{1}\rangle^{-1} A_{1}}{4} \\
& \quad=\left(\frac{\xi_{1} X_{2} X_{3}}{\left(X_{1}-X_{2}\right)\left(X_{2}-X_{3}\right)}+\frac{\xi_{1} X_{3} X_{2}}{\left(X_{2}-X_{3}\right)\left(X_{3}-X_{1}\right)}+\text { cyclic }\right) \\
& \quad-\frac{c^{[1]}}{2 c}\left(\frac{\xi_{1}}{\left(X_{1}-X_{2}\right)\left(X_{3}-X_{1}\right)}+\text { cyclic }\right)
\end{aligned}
$$

In the $(2,5)$ minimal model with

$$
p(x)=4\left(x^{3}-30 G_{4} x-70 G_{6}\right),
$$

we have

$$
c^{[1]}=-51 c G_{4}-\left(\frac{\langle\mathbf{1}\rangle^{-1} A_{1}}{4}\right)^{2}
$$

where $c=-\frac{22}{5}$. Thus we obtain a system of ODEs that closes up.

Generalisation to $g>1$ in algebraic coordinates
Rewrite as

$$
d\langle\mathbf{1}\rangle=-\frac{c}{8}\langle\mathbf{1}\rangle \frac{\operatorname{det} \Xi_{3,1}}{\operatorname{det} V_{3}}-\frac{1}{8} A_{1} \frac{\operatorname{det} \Xi_{3,0}}{\operatorname{det} V_{3}}
$$

for the matrices
$\Xi_{3,0}=\left(\begin{array}{ccc}X_{1} & X_{2} & X_{3} \\ 1 & 1 & 1 \\ \xi_{1} & \xi_{2} & \xi_{3}\end{array}\right), \quad \Xi_{3,1}=\left(\begin{array}{ccc}X_{1} & X_{2} & X_{3} \\ 1 & 1 & 1 \\ \xi_{1} X_{1} & \xi_{2} X_{2} & \xi_{3} X_{3}\end{array}\right)=d V_{3}, \quad V_{3}:=\underbrace{\left(\begin{array}{lll}1 & X_{1} & X_{1}^{2} \\ 1 & X_{2} & X_{2}^{2} \\ 1 & X_{3} & X_{3}^{2}\end{array}\right.}_{\text {Vandermonde }}$.
where $\operatorname{det} \Xi_{3,1}=d \operatorname{det} V_{3}$. This generalises easily to higher genus. For $g=2$ and $k=0, \ldots, 3$, we have to deal with V_{5} and

$$
\Xi_{5, k}=\left(\begin{array}{ccccc}
X_{1}^{3} & X_{2}^{3} & X_{3}^{3} & X_{4}^{3} & X_{5}^{3} \\
X_{1}^{2} & X_{2}^{2} & X_{3}^{2} & X_{4}^{2} & X_{5}^{2} \\
X_{1} & X_{2} & X_{3}^{3} & X_{4}^{3} & X_{5} \\
1 & 1 & 1 & 1 & 1 \\
\xi_{1} X_{1}^{k} & \xi_{2} X_{2}^{k} & \xi_{3} X_{3}^{k} & \xi_{4} X_{4}^{k} & \xi_{5} X_{5}^{k}
\end{array}\right)
$$

Comparison with analytic result for $g=1 \&$ discussion
For $g=1$, the algebraic result translates into the ODE

$$
\left(d-\frac{c \pi i}{24} E_{2} d \tau+\text { const. } \frac{d \lambda}{\lambda}\right)\langle\mathbf{1}\rangle=\frac{1}{2 \pi i} \frac{A_{1}}{4} d \tau .
$$

where $\lambda=(\text { length of real period })^{-1}$.

Translation $z \leftrightarrow x$ is easy:
$\langle\mathbf{1}\rangle_{z} \sim\langle\mathbf{1}\rangle_{x} \Delta^{\frac{c}{24}}$, where $\Delta \sim\left(\operatorname{det} V_{3}\right)^{2}$ is the discriminant.

