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B 

A two dimensional gas of interacting electrons in a strong 
magnetic field B. 

Electrons 

Fractional Quantum Hall Effect 



B Quantum Hall Fluid 

An incompressible quantum liquid can form when the 
Landau level filling fraction v = ne(h/eB) is a rational 
fraction. 

Fractional Quantum Hall Effect 



Topological Degeneracy  (X.G. Wen) 

A theoretical curiosity:  FQH states on topologically nontrivial 
surfaces have degenerate ground states which can only be 
distinguished by global measurements. 

Degeneracy 
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Electron 
(charge = e) 

Quasiparticles 
(charge = e/3) 

When an electron is added to a FQH state it can be 
fractionalized  ---  i.e., it can break apart into fractionally 
charged quasiparticles. 

Fractional Quantum Hall Effect 
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Fractional Statistics: Abelian Anyons 
tim
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= +1    Bosons  

= -1    Fermions 

ν = 1/3 quasiparticles       φ = π/3  

Fractional Abelian Statistics! 
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orthogonal degenerate states 

Non-Abelian Anyons Moore, Read, ‘91 
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orthogonal degenerate states 

Non-Abelian Anyons Moore, Read, ‘91 

Unitary matrix represents 
topological braid operation. 

Matrices form a non-Abelian representation of the braid group. 

Non-Abelian Statistics 

tim
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Topological Quantum Computer 
Kitaev, ‘97; Freedman, Larsen and Wang ‘00 
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Non-Abelian Anyons Moore, Read, ‘91 

Unitary matrix represents 
topological braid operation. tim
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J.S. Xia et al.,‘04 

ν = 5/2:  Believed to be the Moore- 
Read “Pfaffian” state.  

Non-Abelian FQH States 

Moore and Read, ‘91; Morf, ‘98 

ν = 12/5:  Possibly a k = 3 Read-
Rezayi “Parafermion” state.  
Read and Rezayi, ‘99; Rezayi and Read, ‘06 

Fibonacci Anyons 

But these states are very delicate  – 
hard to stabilize and manipulate. 

Not sufficiently rich non-Abelian statistics 
for pure topological quantum computing.  

Good for quantum computation! 



Ultracold atomic gasses (usually bosons) 
Synthetic magnetic field (rotation, laser-induces fields) 
Contact interaction 

B 

Cooper et al., ‘01 

At sufficiently small v =            
we expect Bosonic versions of 
fractional quantum Hall states. 
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2D Bosons under Magnetic Field 

z = x + iy



How do the quantum 
Hall states modify in the 
presence of a lattice? 

Ultracold atomic gasses (usually bosons) 
Synthetic magnetic field (rotation, laser-induces fields) 
Contact interaction 

B 

Cooper et al., ‘01 

At sufficiently small v =            
we expect Bosonic versions of 
fractional quantum Hall states. 

φNN /
Optical lattice 

2D Bosons under Magnetic Field – Lattice 
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2D Bosons under Magnetic Field – Lattice 

Flux density nφ =
Bd 2

h / e

0 ≤ nφ <1

nφ =1

Magnetic unit cell  
= 1 lattice plaquette  

d = 1 



2D Bosons under Magnetic Field – Lattice 

Flux density nφ =
Bd 2

h / e

0 ≤ nφ <1

nφ =
1
2

Magnetic unit cell 
= 2 lattice plaquettes 

d = 1 



2D Bosons under Magnetic Field – Lattice 

Flux density nφ =
Bd 2

h / e

d = 1 

0 ≤ nφ <1

nφ =
1
3

Magnetic unit cell 
= 3 lattice plaquettes 

Moller and Cooper, PRL ‘09 
Palmer and Jacksch, PRL‘06 

Powell et al., PRL ‘10 

Hafezi et al., PRA ‘07 
Sorensen et al., PRL ‘05 1<<φn Effectively the continuum limit 

Map the lattice to a multi-layer 
model in the continuum limit. 

qpn /~φ

nφ =
p
q

p flux quanta per 
q plaquettes 
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Charged Particles in a Magnetic Field – Single 
Particle Picture 

Lattice 

Hofstadter Butterfly 
Hofstadter, ‘76 

Landau Levels 

Continuum 

2/ω

ω)2/1( +n

mqB /=ω

B ε 



2/3 ω

ε /2 ε /3 

Map the lattice near rational nφ to a model in the continuum! 
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Hofstadter, ‘76 
Palmer and Jacksch, ‘06 

nφ = ε <<1
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nφ = ε <<1
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Lowest Landau Level Ground State  
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Non-interacting System: 
Palmer and Jacksch, ‘06 
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Non-interacting System: 
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−2Cos (π x + 2πεx − k)

ψk (x, y) ~ φ(x) e
iky

Hofstadter, ‘76 
Palmer and Jacksch, ‘06 

nφ =1/ 2+ε

−φ(x +1)−φ(x −1)− 2Cos (2πnφx − k)φ(x) = E / Jφ(x)

−2(−1)xCos (2πεx − k)
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Hofstadter, ‘76 
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nφ =1/ 2+ε

−φ(x +1)−φ(x −1)− 2(−1)xCos (2πεx − k)φ(x) = E / Jφ(x)
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band index 

Ground State Ansatz ψk,s (x, y) ~ Fs (x)e
−πε (x−xk−sπ )
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Palmer and Jacksch, ‘06 
εφ += 2/1n            Non-interacting System: 
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2 degenerate ground states for each k 



Palmer and Jacksch, ‘06 
εφ += 2/1n            Non-interacting System: 

bilayer 

‘pseudospin’ 

By introducing the band index we can map the energy spectrum near 
nφ = ½ to Landau levels with each level being two-fold degenerate.  

Similar to the continuum case (nφ =ε) but now with a form factor that 
depends on band index. 

2-fold degeneracy band index 

Ground State Ansatz ψk,s (x, y) ~ Fs (x)e
−πε (x−xk−sπ )
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Interacting System 
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Haldane, ‘83 
Cooper, ‘08 Interaction 

We carry out exact diagonalization of the potential for finite size systems. 
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            Interacting Case Near nφ = 1/2 	


ψk,s (x, y) ~ Fs (x)e
−πε (x−xk−sπ )
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Can a pairing process be observed in an incompressible state? 
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Pairs of particles can flip their pseudospin/tunnel between layers. 

          Interacting Case at εφ += 2/1n
Pseudospin 

Non-pseudospin conserving terms 
π24321 ++=+ kkkk

umklapp scattering 
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Incompressible States 

There is an incompressible 
state at v = 1 that becomes 
more robust as ε increases. 

Gap closes as ε vanishes! 

The ε-dependent off-diagonal 
matrix elements seem to stabilize 

the incompressible state.  
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Trial Wavefunction 
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Near flux density nφ = ½: Effectively a bilayer system 
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•  Does not prevent particles of opposite pseudospin from approaching  
one another --- not energetically favorable. 
•  The overlap is not good either.  
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Near flux density nφ = ½: Effectively a bilayer system 

Continuum 
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•  Prevents particles with opposite pseudospin from approaching one another  
• The pfaffian factors permit the particles with the same pseudospin to pair up, 
which is consistent with our pairing conjecture.  
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How Good is the Trial Wave function? 
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For ε = 0.16, the overlap is 0.99999! 
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Abelian or Not? 
Moore-Read State 
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1, σ ,ψ{ }Ising CFT: 

Free Chiral Bose Field: φ
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Ψe({zi},{wi}) = ψb z1( )ψb z2( )…ψb zN( )ψqh w1( )ψqh w2( )…ψqh wM( )

Non-Abelian 
excitations 

Two coupled Moore-Read States 
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1, σ ↑,ψ↑{ }× 1, σ ↓,ψ↓{ }2 coupled copies of Ising CFT: 

The combined excitations 
are effectively Abelian. 

↓

← U(1)4

φψψ i
b e ↓
↓ =





Lattice near nφ = p/q + ε	
 q-layer continuum system 

Generalization to nφ = p/q + ε	


Potentially more interesting states but probably harder to realize… 
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•  Interaction potential suggests pairing of particles with the same 
pseudospin. 
•  At v = 1 pairing terms stabilize the groundstate. 

•  Near nφ = ½           two-fold degeneracy due to pseudospin.      

•  Pairing terms might be important for other filling fractions, flux 
densities, other types of interactions, fermions, etc. 

Summary and Outlook 

•  Trial wave function for the groundstate of v = 1 has excellent overlap 
with ED result and the excitation spectrum matches the prediction for 
coupled Moore Read states.  

•  ‘Dislocations’         modifying topology?          Non-Abelian States? 
Barkeshli and Qi, ‘12 


