Fractional Quantum Hall Effect of Lattice Bosons

$$
\text { Phys. Rev. Lett. 108, } 256809 \text { (2012) }
$$

Layla Hormozi

National University of Ireland

Gunnar Moller Steven H. Simon

University of Cambridge
University of Oxford

> Plus some new stuff.

Joost Slingerland National University of Ireland

- Support: NIST/NRC; Marie Curie IIF

Fractional Quantum Hall Effect

A two dimensional gas of interacting electrons in a strong magnetic field \boldsymbol{B}.

Fractional Quantum Hall Effect

An incompressible quantum liquid can form when the Landau level filling fraction $\boldsymbol{v}=\mathbf{n}_{\mathrm{e}}(\mathbf{h} / \mathbf{e B})$ is a rational fraction.

Topological Degeneracy (X.G. Wen)

A theoretical curiosity: FQH states on topologically nontrivial surfaces have degenerate ground states which can only be distinguished by global measurements.

For the $\nu=1 / 3$ state:

Degeneracy

1
3
9
3^{N}

Fractional Quantum Hall Effect

When an electron is added to a FQH state it can be fractionalized --- i.e., it can break apart into fractionally charged quasiparticles.

Fractional Statistics: Abelian Anyons

$e^{i \phi}=+1 \quad$ Bosons
$e^{i \phi}=-1 \quad$ Fermions

$$
\left|\psi_{f}\right\rangle=e_{R}^{i \phi}\left|\psi_{i}\right\rangle
$$

$$
\left|\psi_{i}\right\rangle
$$

$$
v=1 / 3 \text { quasiparticles } \rightarrow \phi=\pi / 3
$$

\rightarrow Fractional Abelian Statistics!

Non-Abelian Anyons

Non-Abelian Anyons

Matrices form a non-Abelian representation of the braid group.

\longrightarrow Non-Abelian Statistics

Non-Abelian Anyons

Topological Quantum Computer
Kitaev, '97; Freedman, Larsen and Wang '00

Non-Abelian FQH States

$$
\begin{aligned}
& \text { (} \\
& \text { But these states are very delicate - } \\
& \text { hard to stabilize and manipulate. }
\end{aligned}
$$

2D Bosons under Magnetic Field

Ultracold atomic gasses (usually bosons)
Synthetic magnetic field (rotation, laser-induces fields)
Contact interaction \longrightarrow At sufficiently small $v=N / N_{\phi}$ we expect Bosonic versions of fractional quantum Hall states.
$v=\frac{1}{2} \quad \psi_{L}\left(\left\{z_{i}\right\}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2} e^{-\sum_{i}\left|z_{i}\right|^{2} / 4}$
Laughlin State
$v=1 \quad \psi_{M R}\left(\left\{z_{i}\right\}\right)=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) e^{-\sum_{i}\left|z_{i}\right|^{2} / 4} \quad$ Moore-Read State

2D Bosons under Magnetic Field - Lattice

Ultracold atomic gasses (usually bosons)
-Synthetic magnetic field (rotation, laser-induces fields)
Contact interaction \longrightarrow At sufficiently small $v=N / N_{\phi}$ we expect Bosonic versions of fractional quantum Hall states.

Cooper et al., '01

How do the quantum

 Hall states modify in the presence of a lattice?$v=\frac{1}{2} \quad \psi_{L}\left(\left\{z_{i}\right\}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2} e^{-\sum_{i}^{\left|z_{i}\right|^{2} / 4}}$
Laughlin State
$v=1 \quad \psi_{M R}\left(\left\{z_{i}\right\}\right)=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) e^{-\sum_{i}\left|z_{i}\right|^{2} / 4}$
Moore-Read State

2D Bosons under Magnetic Field - Lattice

Flux density $n_{\phi}=\frac{B d^{2}}{h / e}$

$$
0 \leq n_{\phi}<1
$$

2D Bosons under Magnetic Field - Lattice

${ }^{d}$										$0^{2} \quad n_{\phi}=\frac{1}{2}$	
		-		-		-	-	-			
	-		\bigcirc		\bigcirc		-	-	-		
-		-		-		-	-			-	$=2$ lattice plaquettes

Flux density $n_{\phi}=\frac{B d^{2}}{h / e}$

$$
0 \leq n_{\phi}<1
$$

2D Bosons under Magnetic Field - Lattice

Flux density $n_{\phi}=\frac{B d^{2}}{h / e}$

$$
n_{\phi}=\frac{p}{q} \rightarrow \begin{gathered}
\text { p flux quanta per } \\
\text { q plaquettes }
\end{gathered}
$$

$$
0 \leq n_{\phi}<1
$$

$n_{\phi} \ll 1 \rightarrow$ Effectively the continuum limit
Sorensen et al., PRL '05
Hafezi et al., PRA '07

$$
n_{\phi} \sim p / q \rightarrow \begin{aligned}
& \text { Map the lattice to a multi-layer } \\
& \text { model in the continuum limit. }
\end{aligned}
$$

Palmer and Jacksch, PRL ‘06

Holler and Cooper, PRL '09 Powell et al., PRL '10

Charged Particles in a Magnetic Field - Single Particle Picture

Continuum

Landau Levels

$$
E_{n}=(n+1 / 2) \hbar \omega \quad \omega=q B / m
$$

Lattice

Hofstadter Butterfly
Hofstadter, '76

Map the lattice near rational n_{ϕ} to a model in the continuum!

Non-interacting System: $n_{\phi}=\varepsilon \ll 1$

Hofstadter, '76

$$
H=-J \sum_{\langle i j\rangle}\left(e^{i \theta_{j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \overrightarrow{\vec{A}} \cdot d \vec{l}
$$

Landau Gauge
 $\vec{A}=(0,-B x, 0)$

$$
\rightarrow \psi_{k}(x, y) \sim \phi(x) e^{i k y}
$$

$$
\sum_{\text {plaperete }} \theta_{i j}=2 \pi n_{\phi}
$$

$$
-\phi(x+1)-\phi(x-1)-2 \operatorname{Cos}\left(2 \pi n_{\phi} x-k\right) \phi(x)=E / J \phi(x) \quad l_{0}=\frac{1}{\sqrt{2 \pi \varepsilon}}
$$

$$
n_{\phi}=\varepsilon \ll 1 \rightarrow-\partial_{x}^{2} \phi(x)+2 \pi \varepsilon\left(x-x_{k}\right)^{2} \phi(x)=\widetilde{E} \phi(x) x_{k}=\frac{k+2 m \pi}{2 \pi \varepsilon}
$$

Non-interacting System: $n_{\phi}=\varepsilon \ll 1$

Hofstadter, ‘76

$$
H=-J \sum_{\langle i j\rangle}\left(e^{i \theta_{i j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \vec{A} \cdot d \vec{l}
$$

Landau Gauge
$\vec{A}=(0,-B x, 0)$

$$
H=-\partial_{x}^{2}+2 \pi \varepsilon\left(x-x_{k}\right)^{2}
$$

$$
x_{k}=\frac{k}{2 \pi \varepsilon}
$$

$$
\sum_{\text {plaquette }} \theta_{i j}=2 \pi n_{\phi}
$$

Ground State $\rightarrow \psi_{k}(x, y) \sim e^{-\pi \varepsilon\left(x-x_{k}\right)^{2}} e^{i k y} \quad \rightarrow \quad$ Lowest Landau Level Energy Spectrum $\rightarrow E_{n}=4 \pi \varepsilon J(n+1 / 2)$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

$$
H=-J \sum_{\langle i j\rangle}\left(e^{i \theta_{i j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Hofstadter, ‘76
Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \vec{A} \cdot d \vec{l}
$$

Landau Gauge
$\vec{A}=(0,-B x, 0)$

$$
\rightarrow \psi_{k}(x, y) \sim \phi(x) e^{i k y}
$$

$$
\sum_{\text {plaquette }} \theta_{i j}=2 \pi n_{\phi}
$$

$$
-\phi(x+1)-\phi(x-1)-2 \operatorname{Cos}\left(2 \pi n_{\phi} x-k\right) \phi(x)=E / J \phi(x)
$$

$$
-2 \operatorname{Cos}(\pi x+2 \pi \varepsilon x-k)
$$

$$
-2(-1)^{x} \operatorname{Cos}(2 \pi \varepsilon x-k)
$$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

$$
H=-J \sum_{i j\rangle}\left(e^{i \theta_{i j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Hofstadter, ‘76
Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \vec{A} \cdot d \vec{l}
$$

$$
\begin{aligned}
& \text { Landau Gauge } \\
& \vec{A}=(0,-B x, 0)
\end{aligned} \rightarrow \psi_{k}(x, y) \sim \phi(x) e^{i k y}
$$

$$
\sum_{\text {plaquette }} \theta_{i j}=2 \pi n_{\phi}
$$

$$
-\phi(x+1)-\phi(x-1)-2(-1)^{x} \operatorname{Cos}(2 \pi \varepsilon x-k) \phi(x)=E / J \phi(x)
$$

$$
\varepsilon \ll 1 \rightarrow-\partial_{x}^{2} \phi(x)+2 \pi \varepsilon(-1)^{x}\left(x-x_{k}\right)^{2} \phi(x)=\widetilde{E} \phi(x) \quad x_{k}=\frac{k+2 m \pi}{2 \pi \varepsilon}
$$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

$$
H=-J \sum_{i j\rangle}\left(e^{i \theta_{i j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Hofstadter, ‘76
Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \vec{A} \cdot d \vec{l}
$$

$$
\begin{aligned}
& \text { Landau Gauge } \\
& \vec{A}=(0,-B x, 0)
\end{aligned} \rightarrow \psi_{k}(x, y) \sim \phi(x) e^{i k y}
$$

$$
\sum_{\text {plaquette }} \theta_{i j}=2 \pi n_{\phi}
$$

$$
-\phi(x+1)-\phi(x-1)-2(-1)^{x} \operatorname{Cos}(2 \pi \varepsilon x-k) \phi(x)=E / J \phi(x)
$$

$$
\varepsilon \ll 1 \rightarrow-\partial_{x}^{2} \phi(x)+2 \pi \varepsilon(-1)^{x+1}\left(x-x_{k+\pi}\right)^{2} \phi(x)=\tilde{E} \phi(x) x_{k+\pi}=\frac{k+2 m \pi \mp \pi}{2 \pi \varepsilon}
$$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

$$
H=-J \sum_{i j\rangle}\left(e^{i \theta_{i j}} c_{i}^{\dagger} c_{j}+\text { h.c. }\right)
$$

Hofstadter, '76
Palmer and Jacksch, '06

$$
\theta_{i j}=\frac{2 \pi}{h / e} \int_{i}^{j} \vec{A} \cdot d \vec{l}
$$

$$
\begin{aligned}
& \text { Landau Gauge } \\
& \vec{A}=(0,-B x, 0)
\end{aligned} \rightarrow \psi_{k}(x, y) \sim \phi(x) e^{i k y}
$$

$$
\sum_{\text {plaperete }} \theta_{i j}=2 \pi n_{\phi}
$$

$$
-\phi(x+1)-\phi(x-1)-2(-1)^{x} \operatorname{Cos}(2 \pi \varepsilon x-k) \phi(x)=E / J \phi(x)
$$

$$
\varepsilon \ll 1 \rightarrow-\partial_{x}^{2} \phi(x)+2 \pi \varepsilon(-1)^{x \in s}\left(x-x_{k \oplus s i t}\right)^{2} \phi(x)=\tilde{E} \phi(x) x_{k+t \pi}=\frac{k+2 m \pi+\Theta \pi s}{2 \pi \varepsilon}
$$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

Ground State Ansatz $\rightarrow \psi_{k, s}(x, y) \sim F_{s}(x) e^{-\pi \varepsilon\left(x-x_{k-s t}\right)^{2}} e^{i k y}$
$F_{s}(x)=\left(1+(-1)^{s+x} A\right) \quad s=0,1 \rightarrow$ band index $\quad x_{k-s \pi}=\frac{k-s \pi}{2 \pi \varepsilon}$ $A=\sqrt{2}-1+O(\varepsilon)$

Non-interacting System: $n_{\phi}=1 / 2+\varepsilon$

Ground State Ansatz $\rightarrow \psi_{k, s}(x, y) \sim F_{s}(x) e^{-\pi \varepsilon\left(x-x_{k-s \pi}\right)^{2}} e^{i k y}$
$F_{s}(x)=\left(1+(-1)^{s+x} A\right) \quad s=0,1 \rightarrow$ band index \rightarrow 2-fold degeneracy
$A=\sqrt{2}-1+O(\varepsilon)$
Similar to the continuum case $\left(n_{\phi}=\varepsilon\right)$ but now with a form factor that depends on band index.

By introducing the band index we can map the energy spectrum near $n_{\phi}=1 / 2$ to Landau levels with each level being two-fold degenerate.

Interacting System

Haldane, '83
Interaction

$$
\begin{aligned}
& \hat{U}=\frac{1}{2} \sum_{k_{1}\left(r_{2} k_{4} k_{4}\right.} U_{k_{2} k_{2} k_{3} k_{4}} c_{k_{1}}^{\dagger} c_{k_{2}}^{\dagger} c_{k_{3}} c_{k_{4}} \\
& U_{k_{1} k_{2} k_{3} k_{4} k_{4}}=\int d r_{1} d r_{2} U\left(r_{1}-r_{2}\right) \psi_{k_{1}}^{*}\left(r_{1}\right) \psi_{k_{2}}^{*}\left(r_{2}\right) \psi_{k_{3}}\left(r_{2}\right) \psi_{k_{4}}\left(r_{1}\right) \\
& \psi_{k_{i}}\left(r_{\alpha}\right) \leftarrow \begin{array}{l}
\text { single-particle basis states } \\
\text { at the lowest Landau level }
\end{array}
\end{aligned}
$$

We carry out exact diagonalization of the potential for finite size systems.
Contact Interaction $\quad \hat{U}=U \sum_{i<j} \delta\left(r_{i}-r_{j}\right)$
Continuum Limit

$$
n_{\phi}=\varepsilon \ll 1
$$

Single Particle Ground State $\quad \psi_{k}(x, y) \sim e^{-\pi \varepsilon\left(x-x_{k}\right)^{2}} e^{i k y}$

$$
\rightarrow \quad U_{k_{1} k_{2} k_{3} k_{4}}=U \sqrt{\varepsilon} e^{-\sum_{\varepsilon_{1}}^{\left.\left(k_{i}-k j\right)^{2}\right)(16 \pi e)} \delta_{k_{1}+k_{2}, k_{3}+k_{4}} \quad \rightarrow \quad \forall i, j k_{i} \approx k_{j} .}
$$

Interacting Case Near $n_{\phi}=1 / 2$

Single Particle
Ground State $\quad \psi_{k}(x, y) \sim e^{-\pi \varepsilon\left(x-x_{k}\right)^{2}} e^{i k y}$
Continuum
$n_{\phi}=\varepsilon \ll 1$

$$
\rightarrow \quad U_{k_{1} k_{2}, k_{3} k_{4}}=U \sqrt{\varepsilon} e^{-\sum_{k_{4}}^{\left(k_{i}-k_{j}\right)^{2} /(16 \pi \varepsilon)}} \delta_{k_{1}+k_{2}, k_{3}+k_{4}}
$$

Single Particle
Ground State

$$
\psi_{k, s}(x, y) \sim F_{s}(x) e^{-\pi \varepsilon\left(x-x_{k-s)^{2}}\right)^{i k y}} \quad n_{\varphi}=\frac{1}{2}+\varepsilon
$$

$$
F_{s}(x)=\left(1+(-1)^{s+x} A\right)
$$

Similar to the continuum case but now

$$
G_{s_{1} s_{2} s_{3} s_{4}}=\frac{1}{2} \sum_{x=0}^{1} F_{s_{1}}(x) F_{s_{2}}(x) F_{s_{3}}(x) F_{s_{4}}(x)
$$ with matrix elements that depend on pseudospin.

Interacting Case at $n_{\phi}=1 / 2+\varepsilon$

Pseudospin

Non-pseudospin conserving terms

$k_{1}+k_{2}=k_{3}+k_{4}+2 \pi$ umklapp scattering

Pairs of particles can flip their pseudospin/tunnel between layers.

Can a pairing process be observed in an incompressible state?

Incompressible States

There is an incompressible state at $v=1$ that becomes more robust as ε increases.

Gap closes as ε vanishes!

\rightarrow The ε-dependent off-diagonal matrix elements seem to stabilize the incompressible state.

Trial Wavefunction

Near flux density $n_{\phi}=1 / 2$: Effectively a bilayer system $\quad v=\frac{1}{2}+\frac{1}{2}$

$v=1$

Continuum

$$
v=\frac{1}{2} \quad \Psi_{L}\left(\left\{z_{i}\right\}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}
$$

$n_{\phi}=\frac{1}{2}+\varepsilon$

- Does not prevent particles of opposite pseudospin from approaching one another --- not energetically favorable.
- The overlap is not good either.

Trial Wavefunction

Near flux density $n_{\phi}=1 / 2$: Effectively a bilayer system $\quad v=\frac{1}{2}+\frac{1}{2}$

$v=1$

$$
\begin{aligned}
& v=\frac{1}{2} \\
& v=\frac{1}{2}
\end{aligned}
$$

Continuum $\quad \Psi_{M R}\left(\left\{z_{i}\right\}\right)=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) \quad v=1$
$n_{\phi}=\frac{1}{2}+\varepsilon$
$\Psi\left(\left\{z_{i}\right\}_{\text {trial }}=\prod_{i<j}\left(z_{i}^{\uparrow}-z_{j}^{\uparrow}\right) P f\left(\frac{1}{z_{i}^{\uparrow}-z_{j}^{\uparrow}}\right) \prod_{i<j}\left(z_{i}^{\downarrow}-z_{j}^{\natural}\right) P f\left(\frac{1}{z_{i}^{\ell}-z_{j}^{\downarrow}}\right)\right.$

- Prevents particles with opposite pseudospin from approaching one another
- The pfaffian factors permit the particles with the same pseudospin to pair up, which is consistent with our pairing conjecture.

How Good is the Trial Wave function?

 groundstate!

Abelian or Not?

Moore-Read State

Ising CFT: $\{1, \sigma, \psi\}$ 2 coupled copies of Ising CFT: $\left\{1, \sigma^{\wedge}, \psi^{\uparrow}\right\} \times\left\{1, \sigma^{\downarrow}, \psi^{\downarrow}\right\}$

Free Chiral Bose Field: ϕ

$$
\begin{equation*}
\Psi_{g}\left(\left\{z_{i}\right\}\right)=\left\langle\psi_{b}\left(z_{1}\right) \psi_{b}\left(z_{2}\right) \ldots \psi_{b}\left(z_{N}\right)\right\rangle \tag{1}
\end{equation*}
$$

The combined excitations are effectively Abelian.

$$
\Psi_{e}\left(\left\{z_{i}\right\},\left\{w_{i}\right\}\right)=\left\langle\psi_{b}\left(z_{1}\right) \psi_{b}\left(z_{2}\right) \ldots \psi_{b}\left(z_{N}\right) \psi_{q h}\left(w_{1}\right) \psi_{q h}\left(w_{2}\right) \ldots \psi_{q h}\left(w_{M}\right)\right\rangle
$$

Generalization to $n_{\phi}=p / q+\varepsilon$

Lattice near $n_{\phi}=p / q+\varepsilon$

q-layer continuum system
Potentially more interesting states but probably harder to realize...

Summary and Outlook

- Near $n_{\phi}=1 / 2 \longrightarrow$ two-fold degeneracy due to pseudospin.
- Interaction potential suggests pairing of particles with the same pseudospin.
- At $v=1$ pairing terms stabilize the groundstate.
- Trial wave function for the groundstate of $v=1$ has excellent overlap with ED result and the excitation spectrum matches the prediction for coupled Moore Read states.

$$
\Psi\left(\left\{z_{i}\right\}\right)_{\text {trial }}=\prod_{i<j}\left(z_{i}^{\uparrow}-z_{j}^{\uparrow}\right) P f\left(\frac{1}{z_{i}^{\uparrow}-z_{j}^{\uparrow}}\right) \prod_{i<j}\left(z_{i}^{\downarrow}-z_{j}^{\downarrow}\right) P f\left(\frac{1}{z_{i}^{\downarrow}-z_{j}^{\natural}}\right) \prod_{i \neq j}\left(z_{i}^{\uparrow}-z_{j}^{\downarrow}\right)
$$

- Pairing terms might be important for other filling fractions, flux densities, other types of interactions, fermions, etc.
- 'Dislocations' \longrightarrow modifying topology? \longrightarrow Non-Abelian States?

