Genus 2 Recursion for Correlation Functions of Vertex Operator Algebras

Thomas Patrick Gilroy
Supervised by Dr. Michael P. Tuite

National University of Ireland Galway

May 4, 2013

Introduction

- A brief recap of Michael's talk.
- Outline of the method.
- General formula for genus 2 1-point Correlation Function.
- The Heisenberg Case and the genus 2 Ward Identity.

A Brief Recap

A Vertex Operator Algebra (VOA) V is a \mathbb{Z}-graded vector space over \mathbb{C} $V=\oplus_{n \geq 0} V_{n}$ with $\operatorname{dim} V_{n}<\infty$.

The genus 1 partition function for V is

$$
Z_{V}^{(1)}(\tau)=\operatorname{Tr}_{V}\left(q^{L(0)-C / 24}\right)
$$

where $\tau \in \mathbb{H}$ and $q=e^{2 \pi i \tau}$. 1-point and n-point correlation functions for V are defined by

$$
\begin{aligned}
& Z_{V}^{(1)}(u, \tau)=\operatorname{Tr}_{V}\left(o(u) q^{L(0)-C / 24}\right) \\
& Z_{V}^{(1)}\left(u_{1}, z_{1} ; \ldots ; u_{n}, z_{n} ; \tau\right)=Z_{V}^{(1)}\left(Y\left[u_{1}, z_{1}\right] \ldots Y\left[u_{n}, z_{n}\right] \mathbf{1}, \tau\right)
\end{aligned}
$$

respectively.

A Brief Recap

Genus 1 Zhu Recursion Theory relates n-point functions to ($n-1$)-point functions. For a 2-point function, we have

$$
\begin{aligned}
Z_{V}^{(1)}(u, x ; v, y ; \tau)= & \operatorname{Tr}_{V}\left(o(u) o(v) q^{L(0)-C / 24}\right) \\
& +\sum_{m \geq 0} \frac{1}{m!} \frac{\partial^{m}}{\partial y^{m}} P_{1}(x-y, \tau) Z_{V}^{(1)}(u[m] v, \tau)
\end{aligned}
$$

The aim of my thesis is to develop an analogue of Zhu Theory at genus 2 .

The Approach

If we have a genus 2 surface formed from two sewn tori, the genus 2 partition function is defined by

$$
Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(u, \tau_{1}\right) Z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)
$$

and the genus 2 1-point function (left insertion) is defined by

$$
Z_{V}^{(2)}\left(v, x ; \tau_{1}, \tau_{2}, \epsilon\right)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(Y[v, x] u, \tau_{1}\right) Z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)
$$

where \bar{u} is dual to u w.r.t the Li-Z metric.

The Approach

We can apply Zhu recursion to the left factor of the 1-point function, giving terms of the form

$$
X(m)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(v[m] u, \tau_{1}\right) Z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)
$$

where $m \geq 0$. If v is quasiprimary, we may move the mode $v[m]$ from left to right using the dagger, so

$$
\begin{aligned}
& X(m)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(u, \tau_{1}\right) Z_{V}^{(1)}\left(v^{\dagger}[m] \bar{u}, \tau_{2}\right) \\
& =(-1)^{\mathrm{wt}[v]} \epsilon^{m+1-\mathrm{wt}[v]} \sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(u, \tau_{1}\right) Z_{V}^{(1)}\left(v[2 \mathrm{wt}[v]-m-2] \bar{u}, \tau_{2}\right)
\end{aligned}
$$

and we can apply Zhu recursion to the right factor if $2 \mathrm{wt}[v]-m-2 \leq-1$.

The Result

If we let

$$
\mathbb{X}(m)=\frac{\epsilon^{-\frac{m}{2}}}{\sqrt{m}} \sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(v[m] u, \tau_{1}\right) Z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)
$$

and

$$
\mathbb{Y}(r)=\frac{\epsilon^{-\frac{r}{2}}}{\sqrt{r}} \sum_{n \geq 0} \epsilon^{n} \sum_{u \in V[n]} Z_{V}^{(1)}\left(u, \tau_{1}\right) Z_{V}^{(1)}\left(v[r] \bar{u}, \tau_{2}\right)
$$

we eventually find the 1-point recursion formula...

The Result

$$
\begin{aligned}
& Z_{V}^{(2)}\left(v, x ; \tau_{1}, \tau_{2}, \epsilon\right)= \\
& O_{1}+\widetilde{\mathbb{P}}(x)\left(\mathbb{1}-\widetilde{A}_{2} \widetilde{A}_{1}\right)^{-1} \widetilde{A}_{2} \Theta \mathbb{O}_{1} \\
& +(-1)^{\mathrm{wt}[v]} \widetilde{\mathbb{P}}(x)\left(\mathbb{1}-\widetilde{A}_{2} \widetilde{A}_{1}\right)^{-1} \Theta \mathbb{O}_{2} \\
& +\mathbb{P}(x) \mathbb{X}_{0}+\widetilde{\mathbb{P}}(x)\left(\mathbb{1}-\widetilde{A}_{2} \widetilde{A}_{1}\right)^{-1} \widetilde{A}_{2} A_{1} \mathbb{X}_{0} \\
& +(-1)^{\mathrm{wt}[v]} \widetilde{\mathbb{P}}(x)\left(\mathbb{1}-\widetilde{A}_{2} \widetilde{A}_{1}\right)^{-1} A_{2} \mathbb{Y}_{0},
\end{aligned}
$$

assuming $\left(\mathbb{1}-\widetilde{A}_{2} \widetilde{A}_{1}\right)^{-1}$ exists, where...

The Result

$$
\begin{aligned}
& \alpha=2 \mathrm{wt}[v]-2, \\
& \Delta(m, n)=\sqrt{\frac{n}{m}} \delta_{m-n, \alpha}, \quad \Theta(m, n)=\sqrt{\frac{n}{m}} \delta_{n-m, \alpha}, \\
& A(m, n)=\frac{\epsilon^{\frac{m+n}{2}}}{\sqrt{m n}}(-1)^{m+1} \frac{(m+n-1)!}{(m-1)!(n-1)!} E_{m+n}(\tau), \\
& (\mathbb{P}(x))(m)=\epsilon^{m / 2} \sqrt{m} \frac{(-1)^{m+1}}{m!} \frac{\partial^{m}}{\partial x^{m}} P_{1}\left(x, \tau_{1}\right), \\
& O_{1}=\sum_{n \geq 0}\left(\epsilon^{n} \sum_{u \in V[n]} \operatorname{Tr} v\left(o(v) o(u) q_{1}^{L(0)-c / 24}\right) z_{V}^{(1)}\left(\bar{u}, \tau_{2}\right)\right), \\
& \mathbb{O}_{1}(m)=\frac{\epsilon^{1 / 2}}{\sqrt{m}}(-1)^{\mathrm{w}[[l]} \delta_{m, \alpha+1} O_{1}, \\
& \mathbb{X}_{0}=\mathbb{X}-\Delta \Theta \mathbb{X}, \quad \mathbb{Y}{ }_{0}=\mathbb{Y}-\Delta \Theta \mathbb{Y}, \\
& \widetilde{A}=A \Delta, \quad \widetilde{\mathbb{P}}(x)=\mathbb{P}(x) \Delta .
\end{aligned}
$$

The Heisenberg Case

Let $N_{\beta_{1}}, N_{\beta_{2}}$ be a pair of Heisenberg modules. Define

$$
Z_{\beta_{1}, \beta_{2}}^{(2)}\left(a, x ; \tau_{1}, \tau_{2}, \epsilon\right)=\sum_{n \geq 0} \epsilon^{n} \sum_{u \in M_{[n]}} Z_{\beta_{1}}^{(1)}\left(Y[a, x] u, q_{1}\right) Z_{\beta_{2}}^{(1)}\left(\bar{u}, q_{2}\right)
$$

We have that

$$
\begin{aligned}
& O_{1}=\beta_{1} Z_{V}^{(1)}\left(\tau_{1}, \tau_{2}, \epsilon\right), \\
& O_{2}=\beta_{2} Z_{V}^{(1)}\left(\tau_{1}, \tau_{2}, \epsilon\right)
\end{aligned}
$$

and since $\alpha=0$, we have $\mathbb{X}_{0}=0=\mathbb{Y}_{0}$ and $\Delta=\mathbb{1}=\Theta$.

The Heisenberg Case

Thus we have

$$
\begin{aligned}
& Z_{\beta_{1}, \beta_{2}}^{(2)}\left(a, x ; \tau_{1}, \tau_{2}, \epsilon\right) d x= \\
& \beta_{1}\left(1-\epsilon^{1 / 2} \sum_{m \geq 1}\left(\mathbb{P}(x)\left(\mathbb{1}-A_{2} A_{1}\right)^{-1} A_{2}\right)(m, 1)\right) Z_{\beta_{1}, \beta_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right) d x \\
& +\beta_{2}\left(\epsilon^{1 / 2} \sum_{m \geq 1}\left(\mathbb{P}(x)\left(\mathbb{1}-A_{2} A_{1}\right)^{-1}\right)(m, 1)\right) Z_{\beta_{1}, \beta_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right) d x \\
& =\left(\beta_{1} \nu_{1}(x)+\beta_{2} \nu_{2}(x)\right) Z_{\beta_{1}, \beta_{2}}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)
\end{aligned}
$$

for holomorphic 1-forms ν_{1}, ν_{2}. This agrees with calculations by Mason and Tuite.

The Virasoro Case and Ward Identity

For the conformal vector $\widetilde{\omega} \in V_{[2]}$, we have

$$
\begin{aligned}
& O_{1}=q_{1} \partial_{q_{1}} Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right), \\
& O_{2}=q_{2} \partial_{q_{2}} Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)
\end{aligned}
$$

Since $\alpha=2$, we have that $\mathbb{X}_{0}=\mathbb{Y}_{0}$ with

$$
\mathbb{X}(1)=\epsilon^{1 / 2} \partial_{\epsilon} Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)=\mathbb{Y}(1)
$$

and $\mathbb{X}(m)=0=\mathbb{Y}(m)$ for $m>1$.

The Virasoro Case and Ward Identity

This allows us to find $\mathbb{A}(x), \mathbb{B}(x)$ and $\mathbb{C}(x)$ such that

$$
\begin{aligned}
Z_{V}^{(2)}\left(\widetilde{\omega}, x ; \tau_{1}, \tau_{2}, \epsilon\right) & =\left(\mathbb{A}(x) q_{1} \partial_{q_{1}}+\mathbb{B}(x) q_{2} \partial_{q_{2}}+\mathbb{C}(x) \epsilon \partial_{\epsilon}\right) Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right) \\
& =\mathbb{D}_{x} Z_{V}^{(2)}\left(\tau_{1}, \tau_{2}, \epsilon\right)
\end{aligned}
$$

If $v \in V$ is a primary vector, we have the Ward Identity

$$
\begin{aligned}
& Z_{V}^{(2)}\left(\widetilde{\omega}, x ; v, y ; \tau_{1}, \tau_{2}, \epsilon\right) \\
& =\mathbb{D}_{x} Z_{V}^{(2)}\left(v, y ; \tau_{1}, \tau_{2}, \epsilon\right) \\
& +\mathbb{P}_{1}^{\alpha}(x, y) \partial_{y} Z_{V}^{(2)}\left(v, y ; \tau_{1}, \tau_{2}, \epsilon\right) \\
& +\partial_{y} \mathbb{P}_{1}^{\alpha}(x, y) w t[v] Z_{V}^{(2)}\left(v, y ; \tau_{1}, \tau_{2}, \epsilon\right)
\end{aligned}
$$

for a specific $\mathbb{P}_{1}^{\alpha}(x, y)$ which depends on $\alpha=2 \mathrm{wt}[v]-2$.

