Collapse of a self-similar cylindrical scalar field with non-minimally coupling

Eoin Condron Supervisor: Brien Nolan

Dublin City University, Ireland Supported by the Irish Research Council for Science, Engineering and Technology

May 3, 2013

Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

May 3, 2013 1 / 19

- Gravitational collapse is one of the most interesting aspects of gravitational physics, leading to many exotic phenonmenon such as neutron stars, supernovae and black holes
- Some theoretical models even have 'naked singularities'
- Penrose's 'Cosmic Censorship Hypothesis' claims that naked singularities shouldn't really exist in our universe
- Einstein equation :

$$G_{ab} = 8\pi T_{ab}$$

The Model

- Self-Similarity of the first kind: $\mathcal{L}_{\xi}g_{ab} = 2g_{ab}$
- The line element for cylindrical symmetry with self-similarity in double null coords with $\eta = v/u$

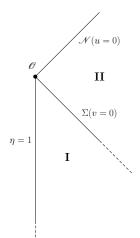
$$ds^2 = -|u|^{-1}e^{2\gamma(\eta)+2\phi(\eta)}dudv + |u|e^{2\phi(\eta)}S^2(\eta)d\theta + |u|e^{-2\phi(\eta)}dz^2.$$
 (1)

• The energy-momentum tensor for self-interacting scalar field:

$$T_{ab} = \nabla_a \psi \nabla_b \psi - \frac{1}{2} g_{ab} \nabla^c \psi \nabla_c \psi - g_{ab} V(\psi)$$
(2)
$$\psi = F(\eta) + \frac{k}{2} \ln |u| \qquad V(\psi) = V_0 e^{-\frac{2}{k}\psi}$$

- Different values of V_0 and k represent different matter models
- Initial data given along a regular axis

Spacetime Diagram



Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

Initial Value problem

New variables

$$\tau = -\log \eta, \quad R = e^{\tau/2} S/S_0, \quad I = 2F/k + \tau/2, \quad \lambda = \frac{k^2}{2} - 1$$

$$\ddot{R} = R\left(\frac{1}{4} - V_0 e^{\lambda I}\right),\tag{3a}$$

$$2\gamma + 2\phi - \frac{k^2}{2}I = \frac{1}{2}\tau,$$
 (3b)

$$\ddot{RI} + \dot{RI} = R\left(\frac{1}{4} - \frac{2}{k^2}V_0e^{\lambda I}\right),$$
(3c)

$$2R\left(\dot{\phi} - \frac{1}{4}\right) + \dot{R} = \dot{R}(0), \tag{3d}$$

$$R(0) = 0, \quad \dot{R}(0) = 1, \quad I(0) = I_0, \quad \dot{I}(0) = 0.$$
 (3e)

Initial value problem

New variables

$$\tau = -\log \eta, \quad R = e^{\tau/2} S/S_0, \quad I = 2F/k + \tau/2, \quad \lambda = \frac{k^2}{2} - 1$$

$$\ddot{R} = R\left(\frac{1}{4} - V_0 e^{\lambda I}\right)$$

$$R\ddot{l} + \dot{R}\dot{l} = R\left(\frac{1}{4} - \frac{2}{k^2}V_0e^{\lambda l}\right),\,$$

$$R(0) = 0, \quad \dot{R}(0) = 1, \quad I(0) = I_0, \quad \dot{I}(0) = 0.$$

Existence & Uniqueness of Solutions

System as a set of first order integral equations:

$$\vec{x} = \vec{x}_0 + \int_0^{\tau} f(\tau, \tau', \vec{x}) d\tau'$$
 (5)

Proposition 1

For τ_* sufficiently small, the mapping T defined above is a contraction mapping from χ to χ and thus has a unique fixed point.

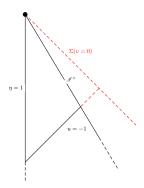
Theorem 1

Let $k, V_0 \in \mathbb{R}$. For each $l_0, \phi_0 \in \mathbb{R}$ there exists a unique solution of the equations (3a)-(3d) on an interval $[0, \tau_*]$ corresponding to a spacetime with line element (1) and energy-momentum tensor (2).

Evolution of solutions to the past null cone of origin $\boldsymbol{\Sigma}$

Proposition 2

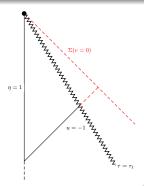
For $V_0 < 0$, $\lambda < 0$, the surface corresponding to $\tau = \tau_1$ in lemma 1 represents future null infinity and the Ricci scalar decays to zero there.



Evolution of solutions to the past null cone of origin Σ

Proposition 3

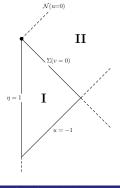
For $V_0 > 0$, $\lambda < 0$, $u_2(0) < k^2/8$ and for $V_0 > 0$, $\lambda > 0$, there exists $\tau_1 < \infty$ such that $\lim_{\tau \to \tau_1} u_1 = -\infty$ ($R \to 0$) and the Ricci scalar blows up there.



Evolution of solutions to the past null cone of origin $\boldsymbol{\Sigma}$

Proposition 4

For $V_0 > 0, \lambda < 0, u_2(0) > k^2/8$ and for $V_0 > 0, \lambda < 0, \Sigma$ is reached in finite affine time along outgoing radial null geodesic and the radial function S, the scalar field ψ and Ricci scalar are non-zero and finite there.



Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

Field equations in region II

• Yet another change of variables

$$t = \ln(-\eta), \quad \mu_1 = \frac{R'(t)}{R} + \frac{1}{2}, \quad \mu_2 = |V_0|e^{\lambda l}, \quad \mu_3 = l'(t) + \frac{1}{2}$$

Field equations in region II

$$\mu_1'(t) = \mu_1 - \epsilon \mu_2 - \mu_1^2 \tag{6a}$$

$$\mu_{2}'(t) = |\lambda|\mu_{2}\left(\frac{1}{2} - \mu_{3}\right)$$
 (6b)

$$\mu_3'(t) = \frac{\mu_1}{2} + \frac{\mu_3}{2} - \epsilon \frac{2\mu_2}{k^2} - \mu_1 \mu_3 \tag{6c}$$

$$\lim_{t \to -\infty} e^{-|\lambda|t/2}(\mu_1, \mu_2, \mu_3) = C\left(\frac{4}{2+k^2}, 1, \frac{16}{k^4(2+k^2)}\right), \quad C > 0$$
(6d)

Three possible outcomes

Case I

$$\lim_{t\to\infty}\vec{\mu}=(1,0,1)$$

• Corresponds to naked singularity

Case II

$$\lim_{t\to\infty}\vec{\mu} = \left(1/2 - \sqrt{|\lambda|}/2, k^2/8, 1/2\right)$$

• Corresponds to censored singularity

Case III

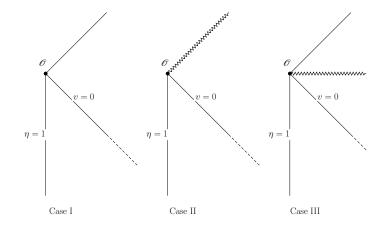
 $|\vec{\mu}|
ightarrow \infty$ in finite time

• Corresponds to censored singularity

Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

May 3, 2013 12 / 19

The three pictures



Analytic solutions

$$\mu_{1} = \sum_{n=1}^{\infty} a_{n} e^{n|\lambda|\bar{t}/2}, \qquad \mu_{2} = \sum_{n=1}^{\infty} b_{n} e^{n|\lambda|\bar{t}/2}, \qquad \mu_{3} = \sum_{n=1}^{\infty} c_{n} e^{n|\lambda|\bar{t}/2}$$
(7)
$$a_{1} = \frac{4}{2+k^{2}}, \qquad b_{1} = 1, \qquad c_{1} = \frac{16}{k^{4}(2+k^{2})}.$$
(8)

Recurrence relations for coefficients

$$a_n = \left(\frac{n|\lambda|}{2} - 1\right)^{-1} \left(-b_n - \sum_{j=1}^{n-1} a_j a_{n-j}\right), \qquad (9a)$$

$$b_n = -\frac{2}{n-1} \sum_{j=1}^{n-1} b_j c_{n-j},$$
(9b)

$$c_n = \left(\frac{n|\lambda|}{2} - \frac{1}{2}\right)^{-1} \left(\frac{a_n}{2} - \frac{2b_n}{k^2} - \sum_{j=1}^{n-1} a_j c_{n-j}\right).$$
(9c)

Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

Theorem 6

Suppose that $|a_j|, |b_j|, |c_j| \le \kappa \delta^{j-1}/j^2$ for all $j < n_*$, for some n_* , κ, δ . Suppose further that

$$n_* > \frac{2}{L} \left(1 + \frac{2}{k^2} + \frac{\kappa}{\delta} s_{n_*} \right), \qquad (10)$$

where

$$s_{n_*} = 2H_{2,n_*-1} + \frac{4}{n_*}H_{1,n_*-1}.$$
 (11)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

15 / 19

May 3, 2013

Then $|a_{n_*}|, |b_{n_*}|, |c_{n_*}| \le \kappa \delta^{n_*-1}/n_*^2$.

Corollary 7

If theorem 8 holds for some κ, δ, n_* , then it holds for κ, δ and all $n > n_*$.

Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-simila<u>r cylindrical scalar fiel</u>

Theorem 8

Let $\hat{\eta} = e^{|\lambda|t/2}$. Suppose that there exist κ, δ such that $|a_n|, |b_n|, |c_n| \le \kappa \delta^{n-1}/n^2$ for all $n \ge 1$. Then the series (4) converge uniformly on $\hat{\eta} \in [0, 1/\delta)$.

Lemma 9

Suppose that there exist κ, δ such that $|a_n|, |b_n|, |c_n| \leq \kappa \delta^{n-1}/n^2$ for all $n \geq 1$, and that the series (10) are approximated by the first N terms. Then the truncation errors e_i for these approximations satisfy the bound

$$e_i \leq \frac{\kappa}{N^2\delta} \left(\frac{(\delta \tau)^{N+1}}{1-\delta \tau} \right).$$
 (12)

Some results for $V_0 > 0$

Lemma 10

Suppose there exists $t_1 > -\infty$ such that $\mu_1(t_1) = 0$. Then there exists $t_2 > t_1$ such that $\lim_{t \to t_2} \mu_1 = -\infty$.

Lemma 11

Suppose there exists t_1 such that $\mu_1(t_1), \mu_3(t_1) < 1/2$ and $\mu'(t_1), \mu'_3(t_1) < 0$. Then there exists $t_2 > t_1$ such that $\mu_1(t_2) = 0$.

Lemma 16

. . .

Suppose that for $1 < k^2 < 4/3$ there exists some t_1 such that $\mu'_3(t_1), \mu''_3(t_1), \mu'''_3(t_1), \mu'''_1(t_1) < A\mu'''_2(t_1)$, and $|\lambda|\mu_3(t_1)/2 < \mu_1(t_1) < 2\mu_2(t_1)$, $\mu'_1(t_1) < \mu''_2(t_1)$. Then there exists some time $t_2 > t_1$ such that $\mu_1(t_2) = 0$.

Numerical data

Let

$$m = \max_{j \in [1,N]} \{ j^2(|a_j|, b_j|, |c_j|) / \kappa \delta^{j-1} \}$$
(13)

k ²	δ	κ	Ν	т	eta ₁	$ar{\mu}_1(\hat{ ext{eta}}_1)$	$e(\hat{eta}_1) <$
0.01	10 ⁶	10 ⁵	412	0.796	$9 imes10^{-7}$	$-2.4 imes10^{-5}$	10^{-24}
0.02	10 ⁵	25,000	224	0.792	$9 imes 10^{-6}$	$-3.04 imes10^{-4}$	10^{-14}
		•	•			•	
0.32	90	80	80	0.846	0.008	-0.0527	10^{-13}
0.33	80	80	80	0.976	0.01	-0.0832	10^{-9}
.	.		•				·

Eoin Condron Supervisor: Brien Nolan (DCCollapse of a self-similar cylindrical scalar field

May 3, 2013 18 / 19

- For $k^2 > 2$, all solutions terminate in region I
- For $V_0 < 0, \, 0 < k^2 < 1.19$ we have censored singularity in region II
- For $V_0 > 0$, $0 < k^2 < 1.43$ we have censored singularity in region II
- Unlikely that these methods will succeed for all k²
- Question of cosmic censorship violation thus far goes unanswered

Thanks for listening. Any questions?