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Non equilibrium quantum dynamics
• A many-body quantum system prepared in a state |ψ0› 

that is not an eigenstate of the Hamiltonian 

• From t=0  it evolves unitarily: 

• No contact with “external” world

• How can we describe the dynamics? 

• What about a “stationary state”?

Path integral formulation

|⇧(t)⇤ = e�iHt |⇧0⇤, thus
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Path integral in imaginary time
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Figure 7. Bottom left: O⇥-diagonal order parameter evolution
for N = 32, M = 16. Right: Fourier transform, the various
plots are shifted on the vertical axis for clarity. Top Left: Non-
equilibrium finite-size “phase diagram” resulting from the time-
averaged canonical gap obtained from the o⇥-diagonal order pa-
rameter, as explained in the text (from ref. [6]).

16, N = 32 which therefore necessitates the use of the previously described trun-
cated eigenbasis. We focus on quenches from the g = 0 uncorrelated ground-state
to various finite values of the coupling.

For general quenches, the mean-field treatment, is known to lead to integrable
classical dynamics, for which, in the steady-state reached for quenches from small
to large coupling, the time evolution of the BCS gap is given by the Jacobi elliptic
function [19, 20]:

�(t) = �+dn[�+(t� �0), k], k = 1��2
�/�2

+,(5.2)

with parameters �+ ⇥ �g and �� ⇤ 0 for a weakly coupled g ⇤ 0+initial state.
This gives rise to non-harmonic persistent oscillations which are periodic in time
with a period given by the complete elliptic integral of the first kind:

T =
2

�+

� �/2

0

d⇥⇥
1� k2 sin2 ⇥

.(5.3)

The mean-field solution should therefore show a Fourier transform made of
equally spaced peaks which, as one can see, is quite di⇥erent from the results ob-
tained here. For small values of the final g, this di⇥erence is no surprise since the
mean-field treatment assumes a BCS-like wave function, which, for a finite size
system in su⌅ciently weak coupling is not realized. However, when g & g⇥ =
(2 lnN)�1, it was shown [17, 21] that the equilibrium static correlation functions
are undistinguishable from the BCS correlations. For the largest final g values

Quantum Quench:  |ψ0› is the Ground state of H0≠H

von Neumann in 1929 posed the question [1003.2133]

It stayed a purely academic question: for condensed matter 
systems the coupling to the environment is unavoidable



T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

Essentially 
unitary time 
evolution

Quantum Newton Cradle

40-250 87Rb atoms in a 1D optical trap



- 1D system “relaxes” very slowly in time, to a strange distribution.

0τ 2τ 4τ 9τ

- 2D and 3D systems relax quickly:

Can a steady state be attained? Surprisingly, YES



- 1D system “relaxes” very slowly in time, to a strange distribution.

0τ 2τ 4τ 9τ

- 2D and 3D systems relax quickly:

The 1D case is special because the system is almost integrable

Can a steady state be attained? Surprisingly, YES

Non-equilibrium new states of matter

When and why a steady state is thermal??
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S Trotzky et al, Nature Phys. 8, 325 (2012)

• Numerical DMRG and experiment agree perfectly

• The stationary state looks thermal
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• Numerical DMRG and experiment agree perfectly

• The stationary state looks thermal

Common Belief: - Generic systems “thermalizes”
- Integrable systems are different

Deutsch ’91, 
Srednicki ’95
Rigol et al ’07

But the system is always in a pure state!



Reduced density matrix

A
B

Reduced density matrix: ρA(t)=TrB ρ(t)

|ψ(t)› time dependent pure state

ρ(t) = |ψ(t)›‹ψ(t)| density matrix of AUB (Infinite)

The expectation values of all local observables in A are

‹ψ(t)|OA(x) |ψ(t)› = Tr[ρA(t) OA(x)]

Stationary state: If for any finite subsystem A it exists the limit 

lim ρA(t) = ρA(∞)
t→∞



Consider the Gibbs ensemble for the whole system AUB 

Thermalization

with

Reduced density matrix for subsystem A:   ρA,T=TrB ρT

The system thermalizes if for any finite subsystem A

ρA,T = ρA(∞) [Landau-Lifshitz vol 5]
[Barthel-Schollwock ’08]
[Cramer, Eisert, et al ’08] + ........

The infinite part B of the system “acts as an heat bath for A”

ρT= e-H/Teff /Z ‹ψ0| H |ψ0› = Tr[ρT H]

Teff  ”is” the energy in the initial state: no free parameter!!



Im is a complete set of local (in space) integrals of motion

What about integrable systems?

Generalized Gibbs Ensemble
[Rigol et al 2007]

[Im ,In]=0   [Im ,H]=0      Im=∑ Om(x)
x

The GGE density matrix is

ρGGE= e-∑ λm Im /Z ‹ψ0| Im |ψ0› = Tr[ρGGE  Im]with λm fixed by

Reduced density matrix for subsystem A: ρA,GGE=TrB ρGGE

The system is described by GGE if for any finite subsystem A

ρA,GGE = ρA(∞) [Barthel-Schollwock ’08]
[Cramer, Eisert, et al ’08] + ........

B is not a standard heat bath for A: 
infinite information on the initial state is retained!

Again no free parameter!!



A toy theory: CFT in 1D
Let us make a long story short (v=1):

‹O(t,x)› ∝ e-π xot/2τo

1. One-point function of a primary operator with ‹ψ0|O(x) |ψ0› ≠ 0:

Exponential relaxation!

2. Two-point function of a primary operator with ‹ψ0|O(x) |ψ0› ≠ 0:

PC, J Cardy 2006/07

Connected correlations vanish for t<r/2

τ0 related to the initial correlation

‹O(t,r)O(t,0)› ∝
e-π xor/2τo     for   t>r/2   

e-π xot/τo       for   t<r/2  { 

If  ‹ψ0|O(x) |ψ0› ≠ 0, for t<r/2   ⇒  ‹O(t,r)O(t,0)›= ‹O(t,0)›2 



Focus:Two-point functions
PC, J Cardy 2006/07

Asymptotic r-decay is exponential

Thermalization of CFT
t

r/2

ln
 ‹O

(t,
r)

O
(t,

0)
›

Horizon

Correlations saturate to 
t-independent values for t > r/2

Finite T 

Sharp horizon and thermalization are consequences 
of perfectly linear dispersion relation and specific initial state

Not true in general

CFT calculations have been generalized to different situations such as two-time 
correlations, systems with boundaries, different initial states, etc....

〈O〉≠0
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FIG. 7. Space-time picture illustrating how the entanglement between an interval A and the
rest of the system, due to oppositely moving coherent quasiparticles, grows linearly and then
saturates. The case where the particles move only along the light cones is shown here for clarity.

momentum p produced at x is therefore at x + v(p)t at time t, ignoring scattering effects.
Now consider these quasiparticles as they reach either A or B at time t. The field at

some point x′ ∈ A will be entangled with that at a point x′′ ∈ B if a pair of entangled
particles emitted from a point x arrive simultaneously at x′ and x′′ (see Fig. 7).

The entanglement entropy between x′ and x′′ is proportional to the length of the interval
in x for which this can be satisfied. Thus the total entanglement entropy is

SA(t) ≈
∫

x′∈A

dx′

∫

x′′∈B

dx′′

∫ ∞

−∞

dx

∫

f(p′, p′′)dp′dp′′δ
(

x′ − x − v(p′)t
)

δ
(

x′′ − x − v(p′′)t
)

.

(4.1)
Now specialize to the case where A is an interval of length ". The total entanglement

is twice that between A and the real axis to the right of A, which corresponds to taking
p′ < 0, p′′ > 0 in the above. The integrations over the coordinates then give max

(

(v(−p′) +
v(p′′))t, "

)

, so that

SA(t) ≈ 2t

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′)(v(−p′) + v(p′′)) H(" − (v(−p′) + v(p′′))t) +

+ 2"

∫ 0

−∞

dp′
∫ ∞

0

dp′′f(p′, p′′) H((v(−p′) + v(p′′))t − ") , (4.2)
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General dispersion relation and Physical interpretation (II)

This simple model allows us to understand the e⇥ect of general
dispersion relations

large r and t behavior given by the
stationary phase approximation
2r/t = d�k/dk = vk

correlations start forming at t = r/2vmax

large t is driven by the slowest particles

Example (�2
k = m2 + 2(1� cos k))

Lattice dispersions give oscillatory
power-law decaying corrections
CFT +t�3/2 cos(��t + �/4)

For a quench to a gapped lattice H
the fastest particle has k ⇤= 0
⇥ spatial oscillations

Pasquale Calabrese Quantum Quenches

Physical Interpretation PC, J Cardy 2006/07

• |ψ0› has an  extensive excess of energy

• |ψ0› acts as a source of quasi-particle at t=0

• particles emitted from regions of size ~τ0 are entangled

• For t>0 quasi-particles move at fixed velocity ±v (linear dispersion)

• Horizon: points at separation r become correlated when left- and right-moving 
particles originating from the same spatial region ~τ0 first reach them

• If all particles move at speed v, correlations are then frozen for t > r/2v 

General lattice dispersion:

General dispersion relation and Physical interpretation (II)

This simple model allows us to understand the e⇥ect of general
dispersion relations

large r and t behavior given by the
stationary phase approximation
2r/t = d�k/dk = vk

correlations start forming at t = r/2vmax

large t is driven by the slowest particles

vk = d�k
dk

Example (�2
k = m2 + 2(1� cos k))

Lattice dispersions give oscillatory
power-law decaying corrections
CFT +t�3/2 cos(��t + �/4)

For a quench to a gapped lattice H
the fastest particle has k ⇤= 0
⇥ spatial oscillations

Pasquale Calabrese Quantum Quenches

vmax exists

correlations form at t = r/2vmax

Slower particles change correlations after t = r/2vmax
large t is driven by slowest particles



Horizon in lattice models
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FIG. 1: (color online) Time evolution of the equal-time density correlation function Ci,j(t) of spinless fermions after a quench
from the CDW ground state of H(V0) with V0 = 10, evolved by the Hamiltonian H(V ), with (a) V = 0, (b) V = 2, (c) V = 5,
(d) and V = 20.

to u(V = 0) = 2vF = 4th, as expected, where vF denotes
the Fermi velocity for V = 0. In addition to the light
cone, additional propagation fronts at later times can be
identified in Fig. 1(a), which, however, possess a lower ve-
locity. This signals that slower quasiparticles stemming
from regions without linear dispersion also participate
in spreading information. Figure 1(c) shows the evolu-
tion of the correlation function for a quench within the
CDW phase, i.e., a case which should not be describable
by conformal field theory. Interestingly, we nevertheless
find a pronounced light-cone behavior in the correlation
function. Although the conformal field theory underlying
the treatment of Calabrese and Cardy is not valid in this
region, the physical picture that ballistically propagating
quasiparticles are generated by the quench seems to hold.
However, in contrast to the case of the quench to the LL
displayed in Figs. 1(a) and (b), we see that a strong alter-
nating pattern forms in the density correlation function
and remains present and qualitatively unchanged after
the onset of the light cone.

A more detailed view of the temporal evolution of the
correlation functions is shown in Fig. 2, in which we plot
the values of Ci,j(t) as a function of time for increasing
distance | i−j | for V = 0 and V = 2, the two extremes of
the Luttinger-liquid phase. After the arrival of the first
signal, oscillatory behavior as a function of time can be
observed at each distance. However, as V is increased,
the observed oscillations both decrease in magnitude and
are damped out more rapidly. Comparing the results for
the free case to the ones obtained for V = 2 in Fig. 2, it
can be seen that the incoming front travels with a higher
velocity when V is larger, as can also be seen in Fig. 1.

In contrast to the oscillatory behavior in the Luttinger-
liquid phase, a steady increase of the correlations is ob-
served when the quench occurs within the CDW phase, as
can be seen in Fig. 3. The alternating pattern imprinted
at the onset of the light cone is preserved. Presumably,
the correlation functions saturate at some time that is
significantly longer than the maximum time reached here.
While results for both V < V0 and V > V0 show the same

Manmana et al ’08
Fermi-HubbardCorrelations and entanglement after a quench in the Bose-Hubbard model 8
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Figure 3. Time-evolution of correlation functions after a quench from Ui = 2J to
Uf = 40J . The upper panel shows the single particle correlation functions

�
b†0br

⇥

for di�erent distances r. The correlations show partial revivals up to a time tr when
they start to reach a quasi-steady state. This time tr grows approximately linearly
with the distance r as marked by the vertical lines. The central panel shows the
same correlations functions after filtering out the high frequencies, see text for details.
The lowest panel shows the density density correlations function

�
n0nr

⇥
after shifting

and rescaling their amplitude for better visibility. The common vertical dashed lines
denote the arrival of the minima as determined from the density-density correlations.
The data shown is ED for a L = 14 and DMRG data for L = 32 and filling n = 1.

correlations ⇧b†jbj+r⌃ and the density-density correlations ⇧njnj+r⌃ at equal time. In

Fig. 3 we show the time-evolution of the di�erent correlations after a quench from the

superfluid, Ui = 2, to the Mott-insulating, Uf = 40, parameter regime.

Single-particle correlations The upper panel shows the correlations ⇧b†0br⌃ for di�erent

distances r‡. For short times the single particle correlations oscillate with the period

2⇥/Uf . The origin of these oscillations lies in the integer spectrum of the operator

n̂j(n̂j � 1)/2. Consider the limit of very strong interactions, where the time-evolution

is totally dominated by the interactions. The time evolution of the single particle

correlations is given by

⇧b†ibj⌃(t) =
⇤

{m},{m0}

�mi,m0
i+1 ⇥ �mj ,m0

j�1 ⇥ eiUf (m0
j�m0

i�1)tc⇥mcm0⇧{m}|b†ibj|{m⇤}⌃.

Here we use the notation {m} for the Fock state with mi particles on site i. The time-

evolution of the correlation function is determined by the non-vanishing cross terms

‡ To extract these correlations from the DMRG data with open boundary conditions the average over
central sites is taken. Note that for periodic boundary conditions this quantitiy is real due to symmetry,
whereas for open boundary conditions an imaginary part can develop. However for the shown functions
and times the imaginary part is negligible.

Kollath-Lauechli ’08
Bose-Hubbard

t
r/2

ln
 ‹O

(t,
r)

O
(t,

0)
›

CFT: linear dispersion

non-linear dispersion

+ a bunch of slowly decaying oscillations
  - Lattice
  - non-zero momentum vmax 

Numerical checks:

t

~τ0



Light cone in experiment
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FIG. 1. Spreading of correlations in a quenched atomic
Mott insulator. a, A 1d ultracold gas of bosonic atoms
(black balls) in an optical lattice is initially prepared deep
in the Mott-insulating phase with unity filling. The lattice
depth is then abruptly lowered, bringing the system out of
equilibrium. b, Following the quench, entangled quasiparticle
pairs emerge at all sites. Each of these pairs consists of a
doublon (red ball) and a holon (blue ball) on top of the unity-
filling background, which propagate ballistically in opposite
directions. It follows that a correlation in the parity of the
site occupancy builds up at time t between any pair of sites
separated by a distance d = vt, where v is the relative velocity
of the doublons and holons.

mentum k, respectively, and k belongs to the first Bril-
louin zone. Quasiparticles thus emerge at any site in the
form of entangled pairs, consisting of a doublon and a
holon with opposite momenta. Some of these pairs are
bound on nearest-neighbour sites while the others form
wave packets, due to their peaked momentum distribu-
tion. The wave packets propagate in opposite directions
with a relative group velocity v determined by the dis-
persion relation �d(k) + �h(�k) of doublons and holons
(Fig. 1b). The propagation of quasiparticle pairs is re-
flected in the two-point parity correlation functions [21]:

Cd(t) = ⌃ŝj(t)ŝj+d(t)⌥ � ⌃ŝj(t)⌥⌃ŝj+d(t)⌥ , (2)

where j labels the lattice sites. The operator ŝj(t) =
ei�[n̂j(t)�n̄] measures the parity of the occupation number
n̂j(t). It yields +1 in the absence of quasiparticles (odd
occupancy) and -1 if a quasiparticle is present (even occu-
pancy). Because the initial state is close to a Fock state
with one atom per lattice site, we expect Cd(t = 0) ⇧ 0.
After the quench, the propagation of quasiparticle pairs
with the relative velocity v results in a positive correla-
tion between any pair of sites separated by a distance
d = vt.

The experimental sequence started with the prepara-
tion of a two-dimensional (2d) degenerate gas of 87Rb
confined in a single antinode of a vertical optical lattice
[17, 21] (z-axis, alat = 532nm). The system was then
divided into about 10 decoupled 1d chains by adding a
second optical lattice along the y-axis and by setting both

lattice depths to 20.0(5)Er, where Er = (2⇤~)2/(8ma2lat)
is the recoil energy of the lattice and m the atomic mass of
87Rb. The e⇢ective interaction strength along the chains
was tuned via a third optical lattice along the x-axis. The
number of atoms per chain ranged between 10 and 18, re-
sulting in a lattice filling n̄ = 1 in the Mott-insulating do-
main. The inital state was prepared by adiabatically in-
creasing the x-lattice depth until the interaction strength
reached a value of (U/J)0 = 40(2). We then brought the
system out of equilibrium by lowering the lattice depth
typically within 100 µs, which is fast compared to the
inverse tunnel coupling ~/J , but still adiabatic with re-
spect to transitions to higher Bloch bands. The final
lattice depths were in the Mott-insulating regime, close
to the critical point. After a variable evolution time, we
“froze” the density distribution of the many-body state
by rapidly raising the lattice depth in all directions to
⌅ 80Er. Finally, the atoms were detected by fluorescence
imaging using a microscope objective with a resolution
on the order of the lattice spacing and a reconstruction
algorithm extracted the occupation number at each lat-
tice site [17]. Because inelastic light-assisted collisions
during the imaging lead to a rapid loss of atom pairs, we
directly detected the parity of the occupation number.

Our experimental results for the time evolution of the
two-point parity correlations after a quench to U/J =
9.0(3) show a clear positive signal propagating with in-
creasing time to larger distances d (Fig. 2). In addition,
the propagation velocity of the correlation signal is con-
stant over the range 2 ⇤ d ⇤ 6 (inset of Fig. 2). We found
similar dynamics also for quenches to U/J = 5.0(2) and
7.0(3) (Fig. 4). We note that the observed signal can-
not be attributed to a simple density wave because such
an excitation would result in ⌃ŝj ŝj+d⌥ = ⌃ŝj⌥⌃ŝj+d⌥. We
compared the experimental results to numerical simula-
tions of an infinite, homogeneous system at T = 0 using
the adaptive time-dependent density matrix renormal-
ization group [22, 23] (t-DMRG). In the simulation, the
initial and final interaction strengths were fixed at the ex-
perimentally determined values and the quench was con-
sidered instantaneous, at t = 0. We found remarkable
agreement between the experiment and theory over all
explored distances and times, despite the finite tempera-
ture T ⇧ 0.1U/kb (kb is the Boltzmann constant) and the
harmonic confinement with frequency ⇥ = 68(1)Hz that
characterise the experimental system. The observed dy-
namics is also qualitatively reproduced by our analytical
model for U/J = 9.0. For lower values of U/J , however,
the model breaks down due to the increasing number of
quasiparticles.

We extracted the propagation velocity v from the time
of the correlation peak as a function of the distance
d (Fig. 3a). A linear fit restricted to 2 ⇤ d ⇤ 6
yields v ⇥ ~/(Jalat) = 5.0(2), 5.6(5) and 5.0(2) for U/J =
5.0(2), 7.0(3) and 9.0(3), respectively. The points for
d = 1 were excluded from the fit, as they result from the

3

FIG. 2. Time evolution of the two-point parity cor-
relations. After the quench, a positive correlation signal
propagates with increasing time to larger distances. The ex-
perimental values for a quench from U/J = 40 to U/J = 9.0
(circles) are in good agreement with the corresponding numer-
ical simulation for an infinite, homogeneous system at zero
temperature (continuous line). Our analytical model (dashed
line) also qualitatively reproduces the observed dynamics. In-
set: Experimental data displayed as a colormap, revealing the
propagation of the correlation signal with a well defined ve-
locity. The experimental values result from the average over
the central N sites of more than 1000 chains, where N equals
80% of the length of each chain. Error bars represent the
standard deviation.

interference between propagating and bound quasiparti-
cle pairs (Eq. (1)). A comparison of the experimental
velocities with the ones obtained from numerical simu-
lations (Fig. 3b) shows agreement within the error bars.
The measured velocities can also be compared with two
limiting cases: On the one hand, they are significantly
larger than the spreading velocity of non-interacting par-
ticles, v = 4 Jalat/~, and twice the velocity of sound
in the superfluid phase [24]; on the other hand, they re-
main below the maximum velocity predicted by our e�ec-
tive model, that can be interpreted as a Lieb–Robinson

FIG. 3. Propagation velocity. a, Determination of the
propagation velocity for the quenches to U/J = 5.0, 7.0 and
9.0. The time of the maximum of the correlation signal is
obtained from fits to the traces Cd(t) (circles). Error bars
represent the 68% confidence interval of these fits. We then
extract the propagation velocities from weigthed linear fits
restricted to 2  d  6 (lines). The data for U/J = 5.0 and
7.0 have been oset horizontally for clarity. b, Comparison
of the experimental velocities (circles) to the ones obtained
from numerical simulations for an infinite, homogeneous sys-
tem at zero temperature (shaded area). The shaded area and
the vertical error bars denote the 68 % confidence interval of
the fit. The horizontal error bars represent the uncertainty
due to the calibration of the lattice depth. The black line cor-
responds to the bound predicted by our eective model (the
shading indicates the break down of this model). The arrows
mark the maximum velocity expected in the non-interacting
case (left) and the asymptotic value derived from our model
when U/J ! 1 (right).

bound (Fig. 3b). This bound equals 6 Jalat/~ in the limit
U/J � ⇥, corresponding to doublons and holons propa-
gating with the respective group velocities 4 Jalat/~ and
2 Jalat/~. The higher velocity of doublons simply reflects
their Bose-enhanced tunnel coupling.

In conclusion, we have presented the first experimen-
tal observation of an e�ective light cone for the spread-
ing of correlations in an interacting quantum many-body
system. Although the observed dynamics can be under-
stood within a fermionic quasiparticle picture valid deep

M. Cheneau et al, Nature 481, 484 (2012)
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We consider the time evolution of observables in the transverse field Ising chain (TFIC) after a
sudden quench of the magnetic field. We provide exact analytical results for the asymptotic time and
space dependence of one- and two-point correlation functions of the order parameter. We employ
two complementary approaches based on asymptotic evaluations of determinants and form-factor
sums. We prove that the stationary value of the two-point correlation function is not thermal, but
can be described by a generalized Gibbs ensemble (GGE). The approach to the stationary state can
also be understood in terms of a GGE.

PACS numbers:

The issue of the existence and the properties of sta-
tionary states in non-equilibrium quantum many-body
systems was raised in von Neumann’s seminal work [1]
in the early days of Quantum Mechanics. Recent ad-
vances in atomic physics have finally made it possible [2]
to experimentally realize many-body quantum systems
that are su⇤ciently weakly coupled to the environment
as to allow the observation of unitary time evolution out
of equilibrium. The simplest scenario is that of a quan-
tum quench: a system is prepared in the ground state of
a given Hamiltonian H(h0), where h0 is experimentally
tuneable parameter such as a bulk magnetic field. At
time t = 0 the parameter h0 is changed suddenly to a
di�erent value h and one then considers the unitary time
evolution of the system, which is determined by the new
Hamiltonian H(h).

Central issues are whether the system relaxes to a sta-
tionary state, and if it does, how to characterize its phys-
ical properties at late times. It is widely believed (see
[3] as a review) that the behaviour of local observables
(such as one and two-point correlation functions) can be
described in terms of an e�ective thermal (Gibbs) distri-
bution or a GGE[4]. It has been argued that the former
case arises in generic situations, while the latter

se two situations should arise in the case of non-
integrable and integrable systems respectively (as some
examples show [4–10]), although a few evidences have
been reported against this scenario [11–13]. However, a
stationary state does not always exist: the order param-
eter of some mean-field models displays persistent oscil-
lations [14]. More refined versions of the thermalization
ideas have also been proposed: it has been argued that
only those operators having a non-local representation
in terms of the excitations of the system can thermal-
ize (i.e. display thermal correlations), as shown in some
numerical examples [12, 15].

According to the above discussion, it is evident that
integrability plays a central rule in quantum quenches,
especially for the properties of the stationary states. It
is then fundamental to have an exact analytical knowl-

edge of the correlation functions in integrable systems
following a quantum quench. The simplest integrable
one-dimensional model is the Ising spin-chain, that has
been often used as a paradigm of quantum quenches. Al-
though the model admits a representation in terms of free
fermions, the local spin �x

i has a non-local representation
in terms of the fermionic degrees of freedom, and so it is
the ideal candidate to test thermalization ideas. Despite
an enormous number of theoretical works on the quench
for the Ising spin chain [16–20], the correlation functions
of the order parameter �x

i are still not known analytically
for a general quench. In this letter we derive analytical
results for the full time dependence of one- and two-point
correlation functions of �x

i in the thermodynamic limit
and for asymptotically large separations and time (but
with arbitrary ratio) for quenches within the ferromag-
netic phase. Some partial results are also presented for
quenches within the paramagnetic phase and across the
critical point. We use two independent methods and the
results coincide in the proper limits, confirming their cor-
rectness that we also check against exact numerical cal-
culations. The first method is based on the asymptotic
evaluation of the determinants, that are typical feature
of free-fermionic theories. The second method is based
on the form-factors approach and it is applied here to
the Ising model, but it is generalizable to any interacting
integrable system, at least in principle. The latter ap-
proach complements other analytical or semi-numerical
methods introduced to tackle quantum quenches in inte-
grable systems [10, 21], but it has the advantage to work
directly in the thermodynamic limit, allowing to obtain
a full analytic answer at least in the present case.

The model and notations. We consider the spin- 1
2 chain
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2
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�
�x

l �x
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l

⇥
. (1)

The quench is performed by preparing the system in
the ground state of the chain with h = h0 and then
let it evolve with the Hamiltonian H(h) with h ⇥= h0.
The eigenstates of the two Hamiltonians are related by
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free fermions!

Ground State:



Quantum Quench h→h’

New Hamiltonian:

New vs old 
Bogoliubov fermions:

An old calculation [Barouch, McCoy & Dresden ’70] 
shows that σz does not thermalize [but a posteriori GGE works]

σz is quite special (non generic): it is local w.r.t. to the fermion 
excitations and couples only to 2-particle states.

σx is non-local (couples to states with arbitrary number of fermions)

★

★

★
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Questions

1. What happens for t→∞?
a. Is the stationary state described by GGE?

c. Can we calculate expectation values of local observables?

2. What is the behavior of local observables for finite t?

3. How fast the t→∞ limit is approached?

b. Is it possible that certain operators thermalize and others don’t?



Numerical results
2

plying sensitivity of its asymptotics to integrability, the
order parameter belongs to the nonlocal sector, making
τϕ
Q representative of the Ising universality class.
We start by considering a spin-1/2 Quantum Ising

chain in a transverse magnetic field Γ with periodic
boundary conditions:

H(Γ) = −J
∑

j

[

σx
j σx

j+1 + Γσz
j

]

, (1)

where σα
j (α = x, y, z) are spin operators, J is the inter-

action strength. Hereafter, unless explicitly written, we
set J = 1. This system has a quantum critical point at
Γc = 1 separating two mutually dual gapped phases, a
quantum paramagnetic one (Γ > 1) and a ferromagnetic
one (Γ < 1), with energy gap ∆ ≡ 2|1 − Γ|. At equilib-
rium, the presence of a critical point dramatically influ-
ences the temperature dependence of the basic time-scale
characterizing the system’s dynamics: the phase coher-
ence time τϕ

T [16]. The latter is usually extracted from the
asymptotics of the on-site spin autocorrelation function
ρxx

T (t) ≡ 〈σx
j (t)σx

j (0)〉, which decays to zero exponen-

tially, [20, 21] ρxx
T (t) ∼ e−t/τϕ

T , at any finite temperature
T > 0, both at criticality (∆ = 0), and in the off-critical
region (T & ∆). At criticality [20], for T & J one finds
τϕ
T ' 8

πT , while τϕ
T is exponentially larger [21, 22] in the

off-critical region with T & ∆: τϕ
T ' π

2T e∆/T .
Consider now a quantum quench, which consists of

preparing the system in the ground state correspond-
ing to a transverse field Γ0, |ψ0〉 = |ψ(Γ0)〉, and then
abruptly quenching it, at t = 0, to some Γ (= Γ0. For
t > 0, the state evolves unitarily under H(Γ), accord-
ing to |ψt〉 = exp[−iH(Γ)t] |ψ(Γ0)〉. We define the zero-
temperature on-site autocorrelation function describing
the spin dynamics after the quench:

ρxx
Q (t) ≡ 〈ψ(Γ0)| eiH(Γ)tσx

j e−iH(Γ)tσx
j |ψ(Γ0)〉 . (2)

Before entering into details, we summarize the results ob-
tained by analyzing the asymptotics of ρxx

Q (t): it always

drops exponentially to zero (see Fig. 1), ρxx
Q (t) ∼ e−t/τϕ

Q ,
as in the finite-temperature equilibrium case, consistent
with what was obtained in Ref. [6] for critical quenches.
This allows us to extract a time-scale τϕ

Q characterizing
the dynamics after the quench. This phase-coherence
time depends in principle on the initial state |ψ(Γ0)〉 and
the final Hamiltonian H(Γ). However, and this is the
main result of this Letter, all the information needed to
characterize τϕ

Q is encoded in two variables only: the final
gap ∆(Γ), and an effective temperature Teff . The latter
is obtained by comparing the energy associated to the
initial state with respect to the Hamiltonian after the
quench to the average energy of a fictitious thermal state
at temperature Teff in an effective canonical ensemble:

E(Γ0) ≡ 〈ψ(Γ0)| H(Γ) |ψ(Γ0)〉 = 〈H(Γ)〉Teff
. (3)
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FIG. 1: (color online). Time dependence of |ρxx
Q (t)| for a

quench to a final ferromagnet Γ = 0.5. Different curves, ob-
tained numerically for a finite chain of L = 600 sites, corre-
spond to different initial Γ0’s. Inset: |ρxx

Q (t)|
√

t for Γ = 1.25.

Most importantly, we find that τϕ
Q = τϕ

T=Teff
, both for

quenches at criticality and away from it.
To calculate ρxx

Q (t) we exploit the complete integrabil-
ity of the Ising chain [23, 24]. Here we sketch the essential
steps [25]: first, one represents spins in terms of Jordan-

Wigner fermions cl ≡ σ−
l exp

(

iπ
∑l−1

j=1 σ+
j σ−

j

)

. Since the
ground state has always an even number of fermions, one
can focus on the even c-fermionic Hilbert space sector.
Switching to momentum representation, the Hamilto-
nian is diagonalized with a Bogoliubov rotation: H(Γ) =
∑

k>0 εΓk
(

γ†
kγk + γ†

−kγ−k − 1
)

, where γk are fermionic

quasi-particle operators, εΓk = 2
√
Γ2 − 2Γ cosk + 1 is

their dispersion, and k = ±π(2n+1)
L with n = 0, . . . , L

2 −1.
The second step consists in describing the dynamics af-
ter a quench. This can be easily done in the Heisen-
berg picture [26], by solving the closed set of equations
of motion for the c-fermions in momentum space, with
the initial conditions associated to the quench. Finally,
ρxx

Q (t) is computed using a trick developed in Ref. [25].
The operator σx

j (t)σx
j (0) connects states with different

c-fermion parity, and it cannot be simply evaluated us-
ing Jordan-Wigner fermions in the even Hamiltonian sec-
tor. This problem can be circumvented by considering
a four-spin correlation function on a chain of length L,
Cx(t; L) =

〈

σx
1 (t) σx

1 (0) σx
L
2
+1

(t) σx
L
2
+1

(0)
〉

. This correla-

tor conserves the c-fermion parity, and can be written as
the square root of a Pfaffian [25], using the techniques
of Ref. [23]. One finally recovers ρxx

Q (t) using the clus-
ter property [ρxx

Q (t)]2 = limL→∞ Cx(t; L), by taking the
square root of Cx(t) in the limit of large number of spins.

As anticipated above, the zero-temperature quench au-
tocorrelation ρxx

Q (t) always relaxes exponentially to zero
(see Fig. 1), irrespective of the initial state |ψ(Γ0)〉 and of

Rossini, Silva,  Mussardo, Santoro ’09-’10
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Figure 1: (color online). Phase coherence time (a) and cor-
relation length (b) extracted from the asymptotic decay of
the two-point order parameter correlations, as a function of
the effective temperature. Data are for quenches ending in the
ferromagnetic phase of the Ising chain at Γ = 0.5 [see Eq. (3)].
Symbols refer to the case of a quench and correspond to dif-
ferent values of Γ0 (empty symbols are for Γ0 < Γ, while filled
ones are for Γ0 > Γ); continuous red curves denote the equilib-
rium values at finite temperatures, while dotted blue curves
correspond to values obtained with a semiclassical analysis
generalized to non-equilibrium cases.

on the contrary, do not exhibit thermalization. The non-
thermal behavior can be nonetheless described by means
of a generalized Gibbs ensemble, as discussed in Sec. VC.
A brief discussion of the effects of integrability break-
ing is sketched in Sec. VI, where we provide numerical
data showing the gradual disappearance of a typical non-
thermal feature in the asymptotic spatial behavior of the
order parameter correlators. Finally, in Sec. VII we draw
our conclusions.

II. THE MODEL: GENERALITIES,
CONTINUUM LIMIT AND BOUNDARY STATE

In this paper we study the spin-1/2 quantum Ising
chain in a transverse magnetic field42, which is charac-
terized by the Hamiltonian

H(Γ) = −J
L
∑

j=1

[

σx
j σ

x
j+1 + Γσz

j

]

, (3)

where L is the number of spins in the chain and σα
j

(α = x, y, z) are the Pauli matrices relative to the jth
spin. Hereafter we impose periodic boundary conditions,
and use a system of units J = 1, ! = 1, and kB = 1. The
quantum Ising chain is the prototype of an exactly solv-
able quantum system and is characterized by two mutu-
ally dual gapped phases, a quantum paramagnet (Γ > 1)
and a ferromagnet (Γ < 1), separated by a quantum crit-
ical point at Γc = 1.

In the following we will consider sudden quenches of
the transverse magnetic field strength Γ: after initial-
izing the system in the ground state |φ(Γ0)〉 ≡ |B〉 of
the Hamiltonian H(Γ0), the field strength is suddenly
changed at time t = 0 from Γ0 to a new value Γ $= Γ0.
Consequently, the state will evolve according to the new
Hamiltonian H(Γ):

|φt〉 = e−iH(Γ)t |B〉 . (4)

A. Lattice formalism

Before entering into the details of the non-equilibrium
dynamics of this model, let us briefly set the notation by
reviewing the diagonalization43,44 of the Hamiltonian (3).
Introducing Jordan-Wigner fermions c†j defined by

σ+
j ≡ c†j exp

(

iπ
j−1
∑

l=1

c†l cl
)

(5)

and omitting constant terms, the Hamiltonian in Eq. (3)
takes the quadratic form

H = −
L−1
∑

j=1

[

c†j cj+1 + c†jc
†
j+1 + h.c.

]

− 2Γ
L
∑

j=1

c†jcj

+(−1)NF

[

c†Lc1 + c†Lc
†
1 + h.c.

]

. (6)

The last term originates from the periodic boundary con-
ditions imposed to the spins and its sign depends on the
parity of the total number NF of c-fermions. Specifi-
cally, if NF is odd, then all the bonds are identical and
periodic boundary conditions on the fermions are im-
posed (cL+1 ≡ c1). Antiperiodic boundary conditions
(cL+1 ≡ −c1) are instead appropriate when NF is even.
The Hamiltonian in Eq. (6) conserves the fermion par-
ity, therefore it can be formally split in two parts acting
on different Fermion-parity subspaces, even (+) and odd
(−): H = H+ + H−, where H± ≡ P±HP± denote the
even/odd subspaces, and P± the associated projectors.
Since in the following we will consider initial states with
an even number of fermions, we will focus our attention
on the even sector only.
The diagonalization of the Hamiltonian now proceeds

in momentum space. Writing the c-fermions as cj =
1√
L

∑

k e
ikjck, where k is

k = ±π(2n+ 1)

L
with n = 0, · · · , L/2− 1 , (7)

the Fourier representation of Eq. (6) in the even sector,
H+, becomes a sum of independent terms

H+ =
∑

k>0

c̄†k Hk c̄k , (8)

•                      decays 
exponentially in time

• For large time, it decays 
exponentially with separation

• Allow to define coherence time 
and correlation length

• Numerically they are the same as 
in finite T 

2

Bogoliubov transformations whose relevant parameter is
cos �k = (hh0 � (h + h0) cos k + 1)/⇥(k)⇥0(k), where
⇥(k) is the dispersion relation ⇥(k) =

⌦
h2 � 2h cos k + 1.

We consider the time evolution of the order parameter
M(t) ⇥ ⌥⌃x

l (t)� and of its two-point function G(⇣, t) ⇥
⌥⌃x

l (t)⌃x
l+⌥(t)�.

Summary and discussion of the results. We fully char-
acterize the quench problem within the ordered phase,
i.e. when both h and h0 are smaller than 1. For the time
evolution of the order parameter we find (⇥⇥ = d⇥(k)/dk)

ln |Masy(t)| = t

⇥ ⇥

�⇥

dk

2⇧
|⇥⇥| ln | cos �k| , (2)

i.e. it decays exponentially to zero with a rate that has
been calculated exactly (the argument of the integral is
always negative). For the two-point function, our result
can be written as

ln |Gasy(⇣, t)| = t

⇥

2|�0|t<⌥

dk

2⇧
2|⇥⇥| ln | cos �k|+

⇣

⇥

2|�0|t>⌥

dk

2⇧
ln | cos �k| . (3)

For ⇣ ⇧ ⌃ only the first term survives and G(⌃, t) is
the square of M(t), showing that cluster decomposition
holds in this non-equilibrium situation.

Furthermore, on the basis of numerical calculations,
we argue that Eq. (3) is asymptotically true also for
h > 1 (i.e. for a quench from the ordered to the disor-
dered phase). However, for t ⇤ ⇣/2 we have oscillating
corrections to the asymptotic scaling of the form

ln |G(⇣, t)| ⌅ ln |Gasy(⇣, t)| + ⇤ + ln cos2(⇥k0(t+ �t)) , (4)

where k0 is determined by cos�k0 = 0, while the con-
stants ⇤ and �t depends on h and h0 in a still unknown
manner. When re-exponentiated to have G(⇣, t), this cor-
rection provides an oscillating amplitude multiplying the
leading term.

In Fig. 1 we compare our predictions for Gasy(⇣, t)
against numerical data showing their correctness both
within the ferromagnetic phase and crossing the critical
point. Figure to be redone and maybe this discus-
sion changed

Our results should be compared with other in the lit-
erature. For h0 = 0, G(⇣, t = ⌃) has been derived in
Ref. [18] for any ⇣. Furthermore Eq. (3) reduces to the
analytic formulas in [18] for any real value of h. Eq. (3)
has the same form predicted on the basis of semiclassical
arguments [5], but here we provide the exact weights in
the two integrals (i.e. ln |�k|). MORE?

We are now in position to discuss the thermalization
of the model. The one-point function is trivially thermal,
since it vanishes for t ⇧⌃, as already noticed elsewhere

FIG. 1: Top: G(`, t) for the quench (�0 = 1, h0 = 0.3)! (� =
1.2, h = 0.7) at fixed distance n = 30 against our prediction
(3). Bottom: Test of Eq. (4) where we fixed ⌘ ⇠ 0.82 and
�t ⇠ 0. If we want to leave these figures, we should
make them smaller and both only for the Ising model,
no �.

[5, 20]. For the two-point function, Eq. (3) for t ⇧ ⌃
predicts exponential decay with correlation length

⌅�1
Q = �

⇥ ⇥

�⇥

dk

2⇧
ln | cos �k| . (5)

This exponential decay is qualitative similar to the be-
havior of the equilibrium G(⇣) at finite temperature T ,
for which the correlation length is [16]

⌅�1
T = �

⇥ ⇥

�⇥

dk

2⇧
ln

���tanh
⇥(k)
2T

��� . (6)

However if G(⇣,⌃) is thermal, ⌅Q must coincide with the
thermal prediction at e⇥ective temperature Te� obtained
by equating the energy in the initial state ⌥⌥0|H|⌥0� to
⌥H�Teff . Simple algebra leads to the equation for Te�

⇥ ⇥

�⇥

dk

2⇧
⇥(k) cos�k =

⇥ ⇥

�⇥

dk

2⇧
⇥(k) tanh

⇥(k)
2Te�

. (7)

Can we say smth analytically?



Exact solution

Calculations are difficult. Developed two analytic methods 
based on (a) determinants (b) form factors.

Result 1: For t=∞ GGE holds

PC, Essler, Fagotti 11/12

ρA,GGE = ρA(∞)We showed that:



Result 2: t=∞ behavior for arbitrary h,h’

Compatible with GGE, but not with thermalization!

Interpretation in terms mode-dependent temperature

thermal correlation length:
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For quenches within the ordered phase (h<1 to h’<1):

(approaches zero although we remain in the ordered phase).

Result 3: Time dependence of 1-pt function

Mode-dependent decay rate:

2

alytic answers directly in the thermodynamic limit.
The model. We consider the spin- 1

2 TFIC Hamiltonian

H(h) = �1
2

⇤⌦

l=�⇤

⇤
⌃x

l ⌃x
l+1 + h⌃z

l

⌅
. (1)

The Hamiltonian can be diagonalized by a combination
of Jordan-Wigner and Bogoliubov transformations (see
e.g. [16]). The dispersion of the elementary fermion
excitations is �h(k) =

↵
h2 � 2h cos k + 1. The system

is initially prepared in the ground state at a field h0.
The field is then instantaneously changed from h0 to h
and unitary time evolution with Hamiltonian H(h) en-
sues. We are interested in the time evolution of the or-
der parameter ⇧x(t) ⇤  ⌃x

l (t)⌦ and its two-point function
⇧xx(�, t) ⇤  ⌃x

l (t)⌃x
l+⇥(t)⌦. Due to translational invari-

ance the 1-point function is position independent and the
2-point function depends only on the distance �. An im-
portant role is played by the di⇥erence �k of the Bogoli-
ubov angles diagonalizing H(h) and H(h0) respectively

0 < cos �k =
hh0 � (h + h0) cos k + 1

�h(k)�h0(k)
⌅ 1. (2)

Quenches within the ordered phase (h, h0 ⌅ 1). We
find that at late times the order parameter relaxes to
zero exponentially fast

 ⌃x
l (t)⌦ ⌃ exp

⌃
t

↵ �

0

dk

⌅
�⇥h(k) ln |cos �k|

⌥
(3)

where �⇥h(k) = d�h(k)/dk. The two-point function of the
order parameter exhivits exponential decay both in time
and distance (⇥(x) denotes the Heaviside function)

⇧xx(�, t) ⌃ exp

�
�

↵ �

0

dk

⌅
ln (cos�k) ⇥

�
2�⇥h(k)t � �

⇥�

⇥ exp

�
2t

↵ �

0

dk

⌅
�⇥h(k) ln (cos �k) ⇥

�
� � 2�⇥h(k)t

⇥
 
. (4)

In the � ⇧ ⌥ limit the first factor is equal to unity
and ⇧xx(⌥, t) =

�
⇧x(t)

⇥2, confirming cluster decompo-
sition in our non-equilibrium situation. Fig. 1 shows a
comparison of our asymptotic result for ⇧xx(�, t) to nu-
merical data, establishing the accuracy pf the the former
even for relatively short separations and times. We note
that (4) agrees with the general strcture put forward in
[5] on the basis of large-scale numerical computations.

The stationary state. The result (4) allows us to make
exact statements regarding thermalization in the model.
The one-point function is trivially thermal, since it van-
ishes for t ⇧ ⌥ as was already pointed out in [5, 20].
On the other hand, in this limit the two-point function
exhibits exponential decay with a correlation length

⇤�1
Q = �

↵ �

��

dk

2⌅
ln | cos �k| . (5)

FIG. 1: �xx(⇥, t) for the quench h0 = 0.3 � h = 0.5 at fixed
distance ⇥ = 20 and ⇥ = 40 against the prediction in (4).

This is reminiscent of the behaviour of the equilibrium
two-point function ⇧xx

eq (�) at temperature T , which de-
cays exponentially with correlation length [16]

⇤�1
T = �

↵ �

��

dk

2⌅
ln
⇧⇧⇧tanh

�(k)
2T

⇧⇧⇧ . (6)

For ⇧xx(�,⌥) to be thermal, ⇤Q would have to equal ⇤�1
Teff

,
where the e⇥ective temperature Te� is determined by the
requirement that the (average) energy in the initial state
 ⌥0|H(h)|⌥0⌦ is given by the thermal average  H(h)⌦Teff .
This leads to the following equation fixing Te�

↵ �

��

dk

2⌅
�h(k) cos�k =

↵ �

��

dk

2⌅
�h(k) tanh

�h(k)
2Te�

. (7)

With Te� given by (7) we find that ⇤�1
Teff

�= ⇤�1
Q and

⇧xx(�,⌥) is therefore never thermal. On the other hand,
for small quenches corresponding to low e⇥ective tem-
peratures, ⇤Q and ⇤Teff can be seen to coincide to or-
der (h � h0)2 [28]. Hence there exists a small quench
regime, where the thermal result provides a good approx-
imation. This agrees with the numerical findings of Ref.
[20], which were reported to be consistent with thermal
behaviour.

GGE needs to be rewritten Interestingly enough, Eq.
(7) can be trivially solved if we allow for a mode-
dependent e⇥ective temperature, i.e.

cos �k = tanh
�(k)

2Te�(k)
. (8)

If now we plug this equation into ⇤T in Eq. (6) we ex-
actly obtain the ⇤Q in Eq. (5). Momentum dependent
e⇥ective temperatures have been employed so far for free
particles models [4–8]. It is however very surprising that
such simple generalized Gibbs ansatz predicts the correct
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⌅⇥x
j (t)⇥x
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the critical point.
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the space-time scaling limit, but it needs to be included to give a good description of the numerical
data. Finally, we note that for h = 1 we have ⇧1(k0) = 0 and (32) reduces to (19).

2.2.4. Quench within the paramagnetic phase. For quenches within the paramagnetic phase the
form factor approach gives the following result (see Section 4.5)

⌅xx
PP (⌦, t) ⌅ ⌅xx

PP (⌦,⌃) + (h2 � 1)
1
4
�

4J2h

⇧ ⇥

�⇥

dk

⇤

K(k)
⇧k

sin(2t⇧k � k⌦)

⇥ exp
⇤
� 2

⇧ ⇥

0

dp

⇤
K2(p)

�
⌦ + �H(⌦� 2t⇧⇤p)[2t⇧⇤p � ⌦]

⇥ ⌅
+ . . . (33)

The regime of validity of (33) is su⌅ciently large values of ⌦ and t and “small” quenches in the sense
discussed in the beginning of section 2. We have not attempted to calculate the infinite time limit
⌅xx

PP (⌦,⌃) within the framework of the form factor approach, because its exact large-⌦ asymptotics
is known from the determinant approach to be [71, 81]

⌅xx
PP (⌦,⌃) ⌅ Cx

PP(⌦)e�⌥/� , (34)
where Cx

PP(⌦) is determined in paper II [81] and

⇥�1 = ln (min[h0, h1])� ln
⇤
h1

h + h0

2hh0

⌅
, h1 =

1 + hh0 +
⌃

(h2 � 1)(h2
0 � 1)

h + h0
. (35)

As discussed in our previous letter [71], (34) is described by a general Gibbs ensemble. Based on
the form factor result (33) one may speculate that the full answer may have the structure

⌅xx(⌦, t) ⌅
⇤
Cx
PP(⌦) + (h2 � 1)

1
4
�

4J2h

⇧ ⇥

�⇥

dk

⇤

K(k)
⇧k

sin(2t⇧k � k⌦) + . . .

⌅

⇥ exp
⇤
�

⇧ ⇥

0

dp

⇤
ln

⇤
1 + K2(p)
1�K2(p)

⌅ �
⌦ + �H(⌦� 2t⇧⇤p)[2t⇧⇤p � ⌦]

⇥ ⌅
+ . . . . (36)

In Fig. 7 we compare the analytic result (33) to numerical results obtained for two di�erent
quenches within the paramagnetic phase. The agreement is seen to be excellent.

For strong quenches the form factor result is not expected to be quantitatively accurate. This
can be seen in Fig. 8. In all cases, the two-point function is seen to display slowly decaying oscillatory
behaviour on the time scales shown. At su⌅ciently large t the decay is proportional to t�3/2. This
is in marked contrast to quenches within the ordered phase. The origin of this di�erence lies in the
nature of the relaxational processes that drive the time evolution. The oscillatory behaviour seen
in the paramagnetic phase arises from processes involving the annihilation of spin-flip excitations,
while the smooth exponential behaviour seen in the ferromagnetic phase is related to the ballistic
motion of domain wall excitations.

The structure of (33) implies the existence of a late time crossover scale t⇥, at which the second
contribution becomes smaller than ⌅xx

PP (⌦,⌃). Using that ⌅xx
PP (⌦,⌃) ⇧ e�⌥/� and that the second

contribution decays like (Jt)�3/2 at late times we may estimate t⇥ as
Jt⇥ ⇤ e2⌥/(3�) . (37)

For the cases shown in Fig. 7 this gives Jt⇥ ⇤ 4114 and Jt⇥ ⇤ 1020 respectively (JtF = 7.5 in both
cases). This means that in both cases the stationary behaviour characterized by the generalized
Gibbs ensemble is revealed only at very late times.

Finally, we note that so far we have not been able to analyze the time evolution of order
parameter correlators for quenches within the paramagnetic phase by means of the determinant
approach.

More complicated relaxational mechanism



A non Homogenous Initial State
Expansion of an interacting gas

Expansion dynamics of interacting bosons in homogeneous lattices

in one and two dimensions
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We experimentally and numerically investigate the expansion of initially localized ultracold bosons
in homogeneous one- and two-dimensional optical lattices. We find that both dimensionality and
interaction strength crucially influence these non-equilibrium dynamics. While the atoms expand
ballistically in all integrable limits, deviations from these limits dramatically suppress the expansion
and lead to the appearance of almost bimodal cloud shapes, indicating di�usive dynamics in the
center surrounded by ballistic wings. For strongly interacting bosons, we observe a dimensional
crossover of the dynamics from ballistic in the one-dimensional hard-core case to di�usive in two
dimensions, as well as a similar crossover when higher occupancies are introduced into the system.

Non-equilibrium dynamics of strongly correlated
many-body systems pose one of the most challenging
problems for theoretical physics [1]. Especially in one di-
mension, many fundamental questions concerning trans-
port properties and relaxation dynamics in isolated sys-
tems remain under active debate. These problems have
attracted a renewed interest in recent years due to the
advent of ultracold atomic gases. The ability to control
various system parameters in real time has not only al-
lowed quantum simulations of equilibrium properties of
interacting many-body systems [2], but has also enabled
experimental studies of quantum quenches [3–7] and par-
ticle transport [8–12] in clean, well-controlled, and iso-
lated systems. Here, we study the combined e�ects of in-
teractions and dimensionality on the expansion dynamics
of bosonic atoms in optical lattices.

While interactions generally lead to di�usive trans-
port in higher dimensions, the situation is more involved
in one dimension (1D), where the phase space available
for scattering can be severely limited. This was demon-
strated, for example, by the experimental realization of
a quantum Newton’s cradle [5], showing that not all 1D
Bose gases thermalize (see also [13]). An intriguing phe-
nomenon in 1D is the existence of an exact mapping [14]
from hard-core bosons on a lattice or a Tonks-Girardeau
gas [15, 16] to non-interacting spinless fermions, demon-
strating the integrability of these systems. Furthermore,
this mapping establishes that the time evolution of the
density distribution is identical for hard-core bosons and
non-interacting fermions. As a consequence, hard-core
bosons in 1D expand ballistically and, asymptotically,
undergo a dynamical fermionization during the expan-
sion [17, 18]. In a transient regime, even initial 1D
Mott insulators with unity filling are predicted to be-
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Figure 1. (Color) Experimental sequence and time evolu-
tion during the expansion. (a) Sketch of the experimental
sequence. (b)-(d) Experimental time evolution of line den-
sity profiles during a 1D expansion for various interaction
strengths (each line is individually normalized). (e)-(g) Corre-
sponding t-DMRG calculations for eight atoms, plotted using
cubic interpolation.

come coherent during the expansion and to dynamically
form long-lived quasi-condensates at finite momenta [19–
21]. In the presence of doubly occupied lattice sites
(doublons) or even higher occupancies, the above map-
ping is not applicable. The dynamics then become more
involved and can include intriguing quantum distilla-
tion e�ects, namely a demixing of doublons and single
atoms [22, 23].

Several powerful theoretical methods have been used to
study the expansion dynamics in 1D, including the time-
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1) Integrable system: Ballistic Expansion
2) Not-integrable: Diffusive Expansion

J.P.Ronzheimer et al, arXiv:1301.5329

Expansion of initially localized ultracold 
bosons in 1D and 2D optical lattices.

Caux and Konik developed a new 
numerical method for the non-equilibrium 
dynamics of the integrable 1D Bose gas 
(Lieb-Liniger) after the release of a 
parabolic trap [PRL 109, 175301 (2012)]. 



TWO-POINT FERMIONIC CORRELATORS

CF (x, y; t) = h ̂†(x) ̂(y)it

=
N�1X

j=0

�

⇤
j (x, t)�j(y, t)

Model & Quench

1D Bos gas with delta pairwise interaction and in a 
harmonic external potential (Lieb-Liniger):

Tonks-Girardeau limit (c⇾∞) in 2° quantization:

H = �1

2

NX

j=1

@2

@x2
j

+
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2

NX
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!2x2
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via the Jordan-Wigner transformation
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QUENCH PROTOCOL
At time t=0 we release the harmonic trap. The evolution in 
governed by the free-particle Hamiltonian with PBC:

THe strongly interacting Regime

The 1 particle solution 
with Periodic BC: 

�j(x, t) =
1X
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is written in terms of the one in infinite space:
Minguzzi and Gangardt, Phys. Rev. Lett. 94, 240404 (2005)
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Density Profile & the TD limit
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In terms of the TD limit of the particle density at initial time 

one has the TD behavior:

n = N/L = 1/2, !N = 5
      N = 10       N = 100       N = ∞

Numerical evidence it approaches to the 
TD Limit as N and L increase



AGAin the GGE

In the TD and large-time limits the 
traslational invariance is recovered and the 
fermionic correlation function is:

CF (x, y; t ! 1) = 2n
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Again this can be understood in 
terms of a GGE 

Via Wick theorem all local 
observables are GGE! 



OBSERVABLE WITHIN the GGE

BOSONIC CORRELATORS

RÈNYI ENTANGLEMENT ENTROPIES
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DENSITY-DENSITY CORRELATION

from J.S. Caux and R.M. Konik, Phys. Rev. Lett. 109, 
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FIG. 7: The SSF in the DE of the gas after release from a
trap of strength ! for c = 10 (top) and c = 7200 (bottom).
Shown are the gases at (N = L = 14,! = 0.64), (N = L =
28,! = 0.32), and (N = L = 56,! = 0.16). The N = L = 56
data for higher momenta k ⇠ 2kF is not fully saturated. The
error bars (given in insets only) are calculated as for the MDF
(see text).

given by

S⇢⇢

DE

(k ⌧ k
F

) = S
GS

(k) +
m4!4

⇡k2
F

k5
+O(!8). (10)

The simpler scaling for the MDF led us to emphasize this
quantity in the main body of the text.

Contrasting the SSF in the DE, GGE and GCE

In Figs. 8 and 9, we now contrast these results for
the SSF in the DE with those obtained in the GGE and
GCE. We plot the results vs. momentum expressed in
units of kL/k

F

. The particular form of the SSF in at
least the diagonal ensemble at small ! then suggests that
in doubling N and L while halving !, the value of the
SSF will double (see Eqn. 10).

For both displayed values of the interaction strength,
the agreement between the DE and GGE is very good,
and much better than between the DE and GCE. This
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FIG. 8: The di↵erence between the SSF as computed in the
DE and as computed in the GGE and GCE for N = L = 28
(left) and N = L = 56 (right). Top: The gas after release
from a trap of strength ! = 0.32 (N = L = 28) and ! =
0.16 (N = L = 56) for c = 7200. Bottom: The gas after
release from the same trap but for c = 10. The GGE estimate
is seen to be more accurate than the GCE throughout the
range of values considered.

is true for the di↵erent trap strengths presented in both
Figs. 8 and 9. We note, however, that the disagreement
between the DE and GGE is larger for c = 10 than for
c = 7200 (Fig. 8).
In terms of a finite size analysis, we note that for the

data in Fig. 8, the DE-GGE curves maintain, roughly
speaking, the same shape between the N = L = 28 and
N = L = 56. Because of how the SSF is scaling with sys-
tem size and our choice of units for momenta, this means
the di↵erence between these two ensembles is decreasing
as system size grows. However the same cannot be said
for the DE-GCE curves. For the larger system size, the
DE-GCE curves are notably more upturned at small mo-
menta suggesting that in the infinite volume limit, the
two ensembles will yield di↵erent results for the SSF.
This e↵ect is, however, much less pronounced for the

data in Fig. 9 where a stronger trap is used. Here the
DE-GGE curve appears flatter for the larger system size
data (N=L=56), while, the DE-GCE curve appears much
the same for the two di↵erent system sizes. A more de-
finable trend may be elusive here because of the larger
uncertainties associated with the larger trap values.

Assessing the convergence of the computation of the

MDF and SSF in the DE

MDF

In computing the MDF in the DE for N = L = 56 and
c = 10, we truncated the expression for the ground state
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Conclusions

• Quantum quenches display a rich phenomenology

• Here, only a small portion of it! 

• Ideal candidates for novel phases of matter

• Many open problems

Thank you for your attention


