Condensed Matter Theory (MP473)

Assignment 4

Please hand in your solutions no later than Tuesday, March 24, 11:05 pm. If you have questions about this assignment, please ask your lecturer,
Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 4.1 Bose condensates in harmonic traps (old exam question)

N non-relativistic non-interacting spinless bosons of mass m are subject to an anisotropic harmonic oscillator type potential,

$$
V(x, y, z)=\frac{1}{2} m \omega\left(x^{2}+y^{2}\right)+\frac{1}{2} m \omega_{z} z^{2}-\frac{1}{2} \hbar\left(\omega_{z}+2 \omega\right) .
$$

(The constant last term sets the oscillator's ground state energy to zero.)
(a) Show that, when $\epsilon \gg \hbar \omega$ and $\epsilon \gg \hbar \omega_{z}$, the density of states for this system is given to good approximation by $g(\epsilon) \approx \frac{\epsilon^{2}}{2 \hbar^{3} \omega_{z} \omega^{2}}$.
(b) In this system, a Bose condensate will form below a certain critical temperature T_{0}. Find T_{0} in terms of N, ω and ω_{z}.
You may use that, for $\alpha>1, \int_{0}^{\infty} \frac{x^{\alpha-1}}{e^{x}-1} d x=\Gamma(\alpha) \zeta(\alpha)$, where Γ and ζ are the Euler Gamma and Riemann zeta functions, see also part (d).
(c) It is given that the momentum space groundstate of a one-dimensional harmonic oscillator with angular frequency ω is $\psi_{0}(p)=(\pi m \omega \hbar)^{-1 / 4} e^{\frac{-p^{2}}{2 \hbar m \omega}}$.
Calculate the probability to observe a particle in our three-dimensional Bose condensate with momentum $\vec{p}=\left(p_{x}, p_{y}, p_{z}\right)$. Compare this probability to the probability of observing a classical nonrelativistic particle with this momentum. Indicate two important observable differences in the behavior of condensed vs. classical particles.
(d) (extra part) The Euler Γ and Riemann ζ functions are defined by

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
\Gamma(z) & =\int_{0}^{\infty} x^{(z-1)} e^{-x} d x
\end{aligned}
$$

Prove the integral formula that was given in part (b)

