
Condensed Matter Theory (MP473) Assignment 2

Please hand in your solutions no later than Tuesday, February 25. If you have questions about

this assignment, please ask your lecturer,

Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 2.1: Creation and annihilation operators

We look at bosonic creation and annihilation operators ai and fermionic creation and
annihilation operators ci

a. State the canonical commutation and anticommutation relations for the ai and a†i
and for the ci and c†i .

b. We define n̂i = a†iai for bosons and n̂i = c†ici for fermions.
Show that [n̂i, a

†
j] = δija

†
i for bosons and that [n̂i, c

†
j] = δijc

†
i for fermions (notice

that this is a commutator, not an anticommutator!).
Use only the canonical commutation and anticommutation relations.

We now consider the N -particle states a†i1a
†
i2
. . . a†iN | 0 〉 for bosons and c†i1c

†
i2
. . . c†iN | 0 〉 for

fermions (here | 0 〉 denotes the vacuum state). Note that some of the indices ip can be
the same for bosons (why not fer fermions?)

c. Show that n̂ja
†
i1
a†i2 . . . a

†
iN
| 0 〉 =

(∑
p δj,ip

)
a†i1a

†
i2
. . . a†iN | 0 〉.

Argue similarly that n̂jc
†
i1
c†i2 . . . c

†
iN
| 0 〉 =

(∑
p δj,ip

)
c†i1c

†
i2
. . . c†iN | 0 〉.

Finally argue that in fact n̂ja
†
i1
a†i2 . . . a

†
iN
| 0 〉 = nja

†
i1
a†i2 . . . a

†
iN
| 0 〉.

Where the unhatted nj is the occupation number of the single particle state ψj.

Similarly for fermions, n̂jc
†
i1
c†i2 . . . c

†
iN
| 0 〉 = njc

†
i1
c†i2 . . . c

†
iN
| 0 〉.

where now nj ∈ {0, 1}

d. Show that the states c†i1c
†
i2
. . . c†iN | 0 〉 for fermions form an orthonormal basis for the

Hilbert space. More specifically, show that these states are normalized and that two
such states are orthogonal unless they have the same number of particles N and
the same indices i1, . . . iN for the occupied single particle states. Again, you can
calculate the inner products using only the canonical anticommutation rules.

e. Show that the states for bosons are also orthogonal. They are not necessarily nor-
malized however. Calculate the norms of the bosonic states.
Hint: start by showing that [ai, (a

†
i )
n] = n(a†i )

n−1
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Ex. 2.2: Potentials in terms of creation and annihilation operators

We consider a system of fermions with single particle wave functions ψk and corresponding
creation and annihilation operators c†k, ck. In this system the particles interact through a
two particle potential V (~x1, ~x2).

a. The states c†kc
†
k′ | 0 〉, with k < k′, form a basis for the space of two-particle states.

Find the action of the operator c†mc
†
m′cl cl′ on this basis. More precisely, show that

c†mc
†
m′cl cl′c

†
kc
†
k′ | 0 〉 = (δk,l′δk′,l − δk,lδk′,l′) c†mc

†
m′ | 0 〉

b. Show that

V̂ c†kc
†
k′ | 0 〉 =

1

2

∑
l,l′,m,m′

Vm′,m,l,l′c
†
mc
†
m′cl cl′c

†
kc
†
k′| 0 〉

where

Vm′,m,l,l′ =

∫
d~x1 d~x2ψ̄m′(~x1)ψ̄m(~x2)V (~x1, ~x2)ψl(~x1)ψl′m(~x2)

c. Now let the ψk be momentum eigenfunctions. To keep things simple, we consider
the case, where the particles live in one dimension, on a line segment of length L,
with periodic boundary conditions, so ψk(x+L) = ψk(x). In this case we can write
ψk(x) = 1√

L
eikx, with k = 2πn

L
for some integer n. We now assume that V (x1, x2)

depends only on the difference x1 − x2 (in fact it will usually depend only on the
absolute value of this difference). More concretely, we write V (x1, x2) = V(x1−x2).
We require that V(x+ L) = V(x). Show that in this case,

Vm′,m,l,l′ = δm+m′,l+l′
1

L

∫ L

0

V(x)ei(m−l
′)x dx

d. For extra points (and kudos!) repeat parts a. and b. of this exercise for states with
more than 2 particles. In other words, show that we actually have

V̂ =
1

2

∑
l,l′,m,m′

Vm′,m,l,l′c
†
mc
†
m′cl cl′

on the entire Fock space.
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