Please hand in your solutions no later than Tuesday, February 18. If you have questions about this assignment, please ask your lecturer,
Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 1.1: Aufbau \& Hund: magnetism of atoms

Figure 1: Periodic Table of the Elements (from Schroeder).
a. Find the electron configurations and term symbols for the ground states of the following atoms and ions. Use the aufbau principle and Hund's rules and explain what you are doing.

Atom/Ion	Ne	K	Si	Ti	Co	Cl^{-}	Fe^{2+}	Fe^{2+}	Nd	Pt
Atomic number	10	19	14	22	27	17	26	26	60	78

Note: Pt is actually an example of an atom that is not described correctly by the Aufbau principle. Its observed electron configuration ends with $5 d^{9} 6 s^{1}$. Challenge: See if you can find the correct term symbol from that configuration.
b. Discuss briefly why there are no Neon magnets, while some of the strongest permanent magnets are Neodymium compounds.

Ex. 1.2: Particles in a 3D harmonic oscillator potential

a. Describe the ground state of a system of N non-interacting bosons in terms of the occupation numbers of single particle states.
Do the same for a system of N non-interacting fermions. For fermions, give an argument that, at $T=0$, we must have $\mu=\epsilon_{F}$, where ϵ_{F} is the energy of the highest occupied state.

Consider N identical fermions of spin $\frac{1}{2}$ and mass m subject to a potential $V(\vec{r})=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}+z^{2}\right)$. The single particles energy levels in the presence of this potential are $E_{\vec{n}}=\hbar \omega\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)$. Here n_{x}, n_{y} and n_{z} are nonnegative integers.
b. Calculate the density of states $g(E)$ for this system.
c. Calculate the Fermi energy ϵ_{F}
d. Express the average energy per particle in the ground state in terms of ϵ_{F}.

Ex. 1.3: Spinless fermions in a 1D harmonic oscillator potential

Recall that the one-dimensional harmonic oscillator with angular frequency ω has energy levels $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$ and corresponding eigenstates $|n\rangle$ whose wavefunctions are

$$
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega x^{2}}{2 \hbar}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)
$$

where H_{n} are the Hermite polynomials, given by

$$
H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)
$$

a. Calculate the first three Hermite polynomials (give them in polynomial form).
b. Find the ground state of a system of two spinless (or spin polarized) fermions in a 1D harmonic osccilator potential
Do the same for three spinless fermions.
c. Argue that the ground state of a system of N spinless fermions in this potential is, up to a normalization constant, given by

$$
\Psi\left(x_{1}, \ldots, x_{N}\right) \sim \prod_{i<j}^{N}\left(x_{i}-x_{j}\right) e^{-\frac{m \omega \sum_{i} x_{i}^{2}}{2 \hbar}}
$$

