
Quantum state tomography of a qubit

We choose the following observables, i.e. self-adjoint operators representing mea-
surable physical quantities,
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These operators form an orthonormal set, or a basis, with respect to the Hilbert-
Schmidt inner product defined as

(A, B) = tr (A†B).



Since the Pauli operators are traceless and satisfy

XY = iZ YZ = iX ZX = iY
YX = �iZ ZY = �iX XZ = �iY

we can explicitly verify that the operators above form an orthonormal set
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Since the observables form a complete orthonormal set of operators, or a basis, they
can be used to expand the density matrix as follows
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where tr (⇢) = 1 and the quantities tr (X⇢), tr (Y⇢), and tr (Z⇢) have the interpretation
of the expectation values, or average value of the observables X, Y and Z for the
system in the state ⇢, respectively.

To get estimates of these quantities, the measurements of X, Y and Z need to be per-
formed repeatedly on a large number m of equally prepared states ⇢. The uncertainty
of the result is decreasing as 1/

p
m via the central limit theorem.

The density matrix can be reconstructed from the measurement results.
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Repeat m times with the same state r and 
calculate the average



Example:

Consider the following results of the repeated measurements of the following physical
quantities, that is, the expectation values

tr (X⇢) = 0, tr (Y⇢) =
1
2
, tr (Z⇢) = 0

The density matrix is then given as
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Note that the corresponding Bloch representation has the Bloch vector (0, 1/2, 0).



Bit-flip error in three-qubit error correcting code

We consider a symmetric binary error channel with the probability p of a bit-flip error.

If we encode the initial pure state of one logical qubit into three physical qubits of a
bit-flip error-correcting code, we get

| i = c0|0i + c1|1i ! c0|000i + c1|111i.

The initial density matrix is then

⇢ =
���c0
���2 |000ih000| + c0c⇤1|000ih111| + c⇤0c1|111ih000| + |c1|2 |111ih111|.



The quantum operation associated with all possible bit-flip errors is then given as

E(⇢) = (1 � p)3 ⇢

+ p(1 � p)2 X1⇢X1 + p(1 � p)2 X2⇢X2 + p(1 � p)2 X3⇢X3
+ p2(1 � p) X1X2⇢X1X2 + p2(1 � p) X2X3⇢X2X3 + p2(1 � p) X1X3⇢X1X3
+ p3 X1X2X3⇢X1X2X3

where for example X1X2 = X1 ⌦ X2 ⌦ I3 with X1 acting on the first physical qubit, X2
acting on the second and the identity operator on the third qubit. Also X = X†.

The probabilities for the individual types of errors are then given as follows

no error (1 � p)3

one correctable error on any physical qubit 3p (1 � p)2

two correlated errors on any two qubits 3p2 (1 � p)
three correlated errors p3



The three-qubit bit-flip code can correct only single qubit bit flip errors:

The logical qubit is encoded in a two-dimensional subspace of the three-qubit Hilbert
space which has the dimension 23 = 8 and thus has 4 orthogonal two-dimensional
subspaces.

Flipping one of the physical qubits causes the qubit state to rotates to another or-
thogonal two-dimensional subspace. The corrupted state can still be distinguished
and transformed back to the original subspace.
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Considering only the single qubit errors, we can write the relevant quantum operation
as

E(⇢) = (1 � p)3 ⇢ + p(1 � p)2 X1⇢X1 + p(1 � p)2 X2⇢X2 + p(1 � p)2 X3⇢X3 . . .

= (1 � p)3
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◆

+ p(1 � p)2
✓���c0
���2 |100ih100| + c0c⇤1|100ih011| + c⇤0c1|011ih100| + |c1|2 |011ih011|
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To perform the error syndrome measurement, we define four operators, that project
the state onto one of the four orthogonal two-dimensional subspaces

P0 = |000ih000| + |111ih111|
P1 = |100ih100| + |011ih011|
P2 = |010ih010| + |101ih101|
P3 = |001ih001| + |110ih110|.





Note that the effect of the measurement is that it produced one of the four pure states
corresponding to the individual terms of the convex combination of pure states E(⇢)
obtained after the error process took place.

We can now recover the original state ⇢ as follows

⇢ = ⇢0 =
���c0
���2 |000ih000| + c0c⇤1|000ih111| + c⇤0c1|111ih000| + |c1|2 |111ih111|

⇢ = X1⇢1X1 = ⇢0

⇢ = X2⇢1X2 = ⇢0

⇢ = X3⇢1X3 = ⇢0.




