Assignment 4: selected solutions

Problem 1:

Consider the following operators A = Z® 1, B=X®1I1,C = ——=1® (Z +X) and

Sl

D= % [® (Z - X) Show that the expectation value

(AC) + (BC) + (BD) — (AD)

for a system in the state |811) = \% (|01) — |10)) violates the Bell inequality.



Solution: evaluation of the expectation values:
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Similarly:
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The final result

(AC) + (BC) + (BD) — (AD) = hd =2V2>2
V2

violates the Bell inequality which requires that in the classical case the correlation
above is bounded by 2.



Problem 2:
Alice sends you one of the following states [y/1) = |1) and |yp) = %(lO) —11)). Show

which of the following POVM elements maximize the distinguishability of the states
in the measurement outcome:
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Ey=1-Ey - Ej, Ey=1-E| - E».

Solution:
The idea is to distinguish the states by the measurement operators £ and E,, that

is, one of the states can only be detected by £ and the other by E».



The case (i):
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In the case (i), the states are distinguished by the operators E; and E».

In the case (ii) E{ly1) # 0, Eqlyn) # 0, and Es|yr1) # 0, Eslyn) # 0, and the states
are not distinguished by the measurement operators in this case.



Problem 3:

Given the Bell state |Byg) = %(lOO) + [11)),

(i) define the measurement operator for measuring 0 on the first qubit,

(i) calculate the relevant probability,

(i) determine the final state immediately after the measurement, and

(iv) given the measurement of the first qubit gave the result 0, calculate the probability
of getting the result 0 and 1 for a subsequent measurement on the second qubit.

Solution: (i) Measurement operator for measuring 0 on the first qubit

P = Po@ 1 =10)01@ 1 =10)0] @ (1001 + [1)(1]) = [00)00] +[01)(01].



(i) The probability of measuring 0 on the first qubit
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(i) The final state after the measurement
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(iv) given the measurement of the first qubit gave the result 0, calculate the probability
of getting the result 0 and 1 for a subsequent measurement on the second qubit:
the final state after the first measurement is |00), and the measurement operators
are I ® Py and I ® Py. The corresponding probabilities are

pi = (00| ® Pol00) = (00[(100)(00] + [10)(10])|00) = 1
p\" = (00)f ® P1]00) = (00I(101)(01| + [11){11])|00) = O.



Problem 4:

Given the state p = %[lOO)(OOl + 100){10| + [10)<00| + [10){10]],

(i) define the measurement operator for measuring 0 on the first qubit,

(i) calculate the relevant probability,

(ili) determine the final state immediately after the measurement, and

(iv) given the measurement of the first qubit gave the result 0, calculate the probability
of getting the result 0 and 1 for a subsequent measurement on the second qubit.

Solution: (i) Measurement operator for measuring 0 on the first qubit

P = Po@ 1 =10)01@ 1 =10)01 @ (10)0] + [1)(1]) = [00)00] +[01)(01].



(i) The probability of measuring 0 on the first qubit

py) =t (BpP)) = tr (Po® DI100)(00] +00)(10] + [10)00] + [10)10[1(Pg ® /)
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(iv) The final state after the first measurement is |00), and the measurement opera-
tors are [ ® Py and I ® Py. The corresponding probabilities are

(2) = (I ® Pp)|00)00I(I ® Pg) = (100)00] + [10)(10]) [00)<00] (I00)(00| + [10)¢10]) = 1
P(lz) = (I'® PI00)00[( ® Py) = (I01)¢01] + [11)(11]) [00)€00] (I01)¢01] + [11)(11]) = 0



Quantum search algorithm (Grover)

Consider an unsorted database with N = 2" entries where n is the number of qubits.
The problem is to determine the index of the database entry which satisfies some
search criterion, that is, to identify the marked state |w).

We are provided with oracle access to a unitary operator, U, which acts as follows:

Uvlwy = —|w)
Uylx) = |x), forall x # w.

The operator U, can be rewritten as

Up = I-2lw)w|

(I = 2w)Xw)) lw) = |w) - 2w)wlw) = —|w),
(I = 2w)Xwl) [x)y = [x) - |wXwlx) = |x).



Let |s) denote the uniform superposition over all states

1 N-1
|s) = i 20 x)

We introduce the Grover diffusion operator

Us = 2|s)s| - I.
The following computations show what happens in the first iteration:
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After the iteration, the probability to measure the marked state has increased from
(wls)I* = § to
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1. Initialize the system to the state
s) =—= ) |
\/N x=0
2. Perform the following Grover iteration r(N) times where r(N) is asymptotically

O(VN):

a) apply the operator U,;
b) apply the operator Us.

3. Perform the measurement €. The measurement result will be A, with the prob-
ability approaching 1 for N >> 1. From 4., w may be obtained.



