QUANTUM MECHANICS FOUNDATIONS OF QUANTUM INFORMATION
PROCESSING

OPERATORS



SECOND POSTULATE

Every measurable physical quantity A is described by an operator A acting on H;
this operator is an observable.

An operator A : H — F such that |y/) = A|y) for

Wwye _H_
domain D(A)
and |Jy'Ye _F

range R(A)



Properties:

1. Linearity A 3;cilo;) = 3, ciAlp;)

2. Equality A = Biff Aly) = Bly) and D(A) = D(B)

3. Sum C = A + Biff Cly) = Aly) + Bly)

AB iff

4. Product C
Clyy =
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5. Functions A% = AA, then A" = AA"~1 and if a function (&) = 3, ax&", then by
the function of an operator f(A) we mean

(&) = D and”

n

e.g.
eA _ ilAn
- n!
n=0

We will see later how to calculate a function of an operator using its speciral
decomposition.



Iff the operator is diagonal, the function of the operator is obtained by
taking the function of each of its diagonal elements, its eigenvalues.

Example:
Let

then



Commutator and anticommutator
In contrast to numbers, a product of operators is generally not commutative, i.e.

AB # BA

For example: three vectors |x), |y) and |z) and two operators R, and Ry such that:

Rix) =10,  Rylxy = —J2),

Ry =), Ryly) =1y,

Rxlz) = =1y}, Rylz) = |x)
then

Rny|Z> = RAx|x> =[xy #
Rny|Z> = _Ry|)’> = —[y




AB — BA is called commutator.
commute iff [A, B] = 0 in which case also [f(A),f(fS)] = 0.
AB + BA is called anticommutator.

An operator [A, B
We say that A and
An operator {A, B

Il o

Basic properties:

+ P>>
=
[l
o>
SN

o
[l
R
= =
+
_I_ —
>

&S
o>

L Q>l L
[l
>
o>
Yy

the Jacobi identity:
(4, [8,¢||+[[¢.4]| +[¢.[4.8]] = o



Types of operators (examples)

1. A is bounded iff 38 > 0 such that ||Aly)|| < Blllw)ll for all [y € D(A). Infimum of
B is called the norm of A

2. A is symmetric if (Y |Ays) = (Ay o) for all [y, ¥o) € D(A).
3. A is hermitian if it is bounded and symmetric.

4. Let A be a bounded operator (with D(A) dense in H); then there is an adjoint operator A
such that

WilATyr) = (Ayilo)



WilATy) = (Waldyy)*
for all [1), ) € D(A).
Properties:
ATl = ||A
@) - 4
(A+B) = AT+
(AI'AB)T = B'AT (the order changes)
(X)T = AT



How can we construct an adjoint?
E.g. Let us have an operator in a matrix representation (so it is also a matrix)

then

AT = (AT)* = transpose & complex conjugation

5. A is selfadjoint if AT = A.
This is the property of observables!
Their eigenvalues are real numbers, e.g. X|x) = x|x)

6. A is positive if (y|Aly) > 0 for all [y) € H

7. Aisnormalif AAT = ATA i.e. [A,AT] =0
S—_—
commutator
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8. Let A be an operator. If there exists an operator A~! such that AA~1 = A~1A
(identity operator) then A~! is called an inverse operator to A
Properties:

(AB) = B4
@' = @y

9. an operator U is called unitary if 0T = U1, i.e. OUT = 070 = 1.

Formal solution of the Schrédinger equation leads to a unitary operator: if H is
the Hamiltonian (total energy operator),

d 4
i) = A(o)

LAl () i ff -
= —— Hd
o W) 7o




If the Hamiltonian is time independent then

W) = e i) = D)

10. An operator P satisfying P = PT = P2 is a projection operator or projector
e.g. if ) is a normalized vector then

Py = Iy

is the projector onto one-dimensional space spanned by all vectors linearly de-
pendent on [iy).



Matrix representation of quantum computing operations




Matrix representation in general
Operator is uniquely defined by its action on the basis vectors of the Hilbert space.
Let B = {ly/j)} be a basis of H (= D(A))

Ay = > Ay )

k
= Z Ak il
k

where Ay ; = <¢k|A|wj> are the matrix elements of the operator A in the matrix repre-
sentation given by the basis 5.
For practical calculations

A = ;mxm&wmwﬂ=;Akj|wk><wj|
J J



Single-qubt operations in the standard computational basis

(i) Phase flip

2 = (Z |k><k|]2(2 |1><1|)=%]<k|2|l> XU

k=0,1 1=0,1
= (01Z10)0){0] + (OIZI1)0)(1] + (1ZIOY1)0] + (LIZ1HI1)(1|

= <0|Z|0>((1))(1 O)+<0|Z|1>((1))(0 1)
+ <1|Z|0>((1))(1 0 +<1|Z|1>((1))(0 1)

[ 0Z10y 01ZIyY (1 0 _
—lazoy aziy ]~ \lo -1 )79

N —



(i) Bit flip

o _ (€0IX10) OIXI1y\_(0 1)_
* s (<1|f<|0> <1|f<|1>)‘(1 o)—“x

(i) ¥ = izX

o _ [ (OITI0) COIFID) | _ ( (01iZRI0) (OiZXIL) |\ _ (0 —i)_
- Lamoy oy )T\ aizgioy qazginy )\ ioo0 )T

A






(vi) Hadamard gate

Sl
Sl

= —(ox+07)

A (<0|F1|0> OIHIT) \ _
V2

A = . .
(11HI0) (1|H|1) |

Sl
Sl



Two-qubt operations in the standard computational basis

(i) CNOTq, (the first qubit is the control qubit, the second is the target):

CNOT»

(ii) CNOT»;:

CNOT»
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oSO O =
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CNOT1,CNOT21CNOT o

(iii) S WAP

SWAP



Composition of operators (by example)




1. Directsum A = Bao C

B acts on Hp (2 dimensional) and € acts on H¢ (3 dimensional)

Let

A b11
B =
( by

o

Acts on Hp & H

b12
5%)

) and C =
b1 b2 0
by by O
0 0 cq
0 0 o9
0 0 «c3q

€11 €12 €13
€21 €22 €23
€31 €32 €33

0 O
0 O
€12 €13
€22 €23
€32 €33




Properties:

Tr (
det
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2. Direct product A = B C:

) € ‘Hp, 1¢) € Hc,

Aly)

biicii
bi1c21
bi1c31
bric11
by1c21
by1c31

(Be ()

biiciz
bi1c
biic32
bric12
by1¢22
br1c32

biic13
bi1c23
bi1c33
byic13
by1c23
by1c33

lx) € Hp® Hc

(1) ® |p))
~———
)¢y to simplify the notation

Bly)Clo)

biaciy
b12c21
biac31
by
bocoq
bpoc3y

bixci2
biac2)
biac32
byci2
boc2)
byoc3)

biac13
bi2c23
b1c33
b3
b3
byoc33




Examples Hadamard gates

=
[
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on two qubit states:
(i) Hadamard gate on the second qubit:

1 1

V2 2

R n 1 1
1.H O.H NG NG
0.H 1.H 0 0
0 0
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Sl




(i) Hadamard gate on the first qubit:

Sl
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~
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S
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(i) Hadamard gates on both qubits:

1 5 1 7
—H —.H
o V2 V2
A®H=
1 p 1
—H ——H
V2 V2
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Eigenvalues and eigenvectors

Solving a quantum mechanical system means to find the eigenvalues and eigenvec-
tors of the complete set of commuting observables (C.S.C.O.)

1. The eigenvalue equation
Ale) = R @_ WVa)
eigenvalue ejgenvector

If n > 1 vectors satisfy the eigenvalue equation for the same eigenvalue «a, we
say the eigenvalue is n-fold degenerate.



2. The eigenvalues of a self-adjoint operator A, which are observables and repre-
sent physical quantities, are real numbers

YalYa) = <WQ|AA¢Q>
= <A\’ﬁa|lﬁa>*=@*<‘ﬁa|¢a>

S>a=a0 = a€R



3. Eigenvectors of self-adjoint operators corresponding to distinct eigenvalues are
orthogonal.
Proof: if B # a is also an eigenvalue of A then

WalAyg) = BWalip)

and also

WolAyp) = (WplAye)*
= a*<¢ﬁ|lpa>*:a<'ﬁa|lﬁﬂ>

which implies

Walvg) = O



Spectral decomposition of an operator

Assume that the eigenvectors of A define a basis 8 = {Ic,bj>},

then Ay = (WilAly j) = ;6.
Operator in this basis is a diagonal matrix with eigenvalues on the diagonal

A = ) Al
kj

= > |
J

= D0k
J

E; is a projector onto 1-dim. space spanned by |y ;) = Spectral decomposition!



Function of an operator using its spectral decomposition

fA) = ) fap = f@)E;
j J

If and only if the operator is diagonal, the function of the operator is obtained by tak-
ing the function of each of its diagonal elements, its eigenvalues.

Example:



