OPEN QUANTUM SYSTEMS
QUANTUM OPERATIONS



Examples of quantum noise and operations

We are now about to consider sending one qubit in a general quantum state char-
acterized by a density matrix p in the Bloch representation through various noisy
qguantum channels characterized by operation elements {E;}. These will introduce
with some probability certain elementary errors onto the quantum state of the qubit,
mapping the state p into a new state given by E(p).
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Phase flip error channel

For the initial state is p = % (I + P.¢") and the operation elements Ej = /1 —p I,
E| = \/[p Z we get

Sp) = EopEg + Eanf =(l=-p)p+pZpZ

[(1=p)(T+Fd)+ p Z(I + F.d)Z]

(1 =p) + (1 = p)rxX + 1Y +r:2Z) + pl + p(rxZXZ + WZYZ + r;ZZ7)]

[[+ (1 = p)rX +ryY + r:Z) + p(—r X — ryY + rZ)]

R = = =] —

= [+ (1 =-2p)riX + (1 =2p)ryY + r:Z]

Phase flips contracts the state on the Bloch sphere in the x-y direction:

- relative phase between qubit basis states is being lost;

- coherences, off-diagonal elements of p, decay; o
- populations, diagonal elements of p, remain unchanged. +1
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Bit flip error channel
For the initial state is p = 5 (I + 7.¢) and the operation elements Eg = /1 -p I,
E| = \/p X we get

&p)

EopE, + E\pE| = (1 = p) p + p XpX
= %[(1 -p) I+ 7))+ p X(I + F.o)X]

1
= 5[(1 —pl + (1 = p)r:X + Y +r:Z) + pl + p(riXXX + ryXYX + r:XZX)]

|

1
5[1 +r X+ (1 =2p)ryY + (1 = 2p)r;Z]

Phase flips contracts the state on the Bloch sphere in the y-z direction:

- populations flip randomly under this process while reducing the difference between
both populations; ‘2

- imaginary part of coherences is being lost. |




Bit-phase flip error channel
For the initial state is p = 5 (I + 7.¢) and the operation elements Eg = /1 -p I,
E| = /p Y we get

Ep) = EopE,+E\pE| =(1-p)p+pYpY

= %[(1 -p) I+ PF)+p YU+ F.o)Y]

|
= 5[(1 —p+ (1 =p)r:X +nrY +rZ)+ pl + p(ryiYXY + WYYY + r:YZY)]

1
= 5[1 + (1 = p)r X + Y +r:Z)+ p(—r X + Y —r:Z)]

%[1 + (1 =2p)rxX + ryY + (1 = 2p)rZ]

Phase flips contracts the state on the Bloch sphere in the y-z direction:
- both populations and phase flip randomly under this process,

the difference between both populations is reduced; ‘2
- real part of coherences is being lost. +1 |
y
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Depolarizing channel
The qubit is with the probability p is depolarized, that is, replaced by the completely
mixed state 7/2:
I
p — &Ep)=(1 P ptp;

Note that £ = 1(p + XpX + YpY + ZpZ), then

3 -
E(p) = (1 - T”) p+ 2—)(pr +YpY +ZpZ) = (1 — q)p + %’(xpx +YpY + ZpZ)

where g = 3p/4.
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(1-p)|0><0] + p |[1><1]
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Amplitude damping
Amplitude damping describes energy dissipation, that is, a loss of energy from the
system, like due to spontaneous emission:

T T
p — &lp)= E()pE(] + ElpE|

The operation elements are defined as

(s ) o3 7

0 1-9y 0 0

where y = sin? # can be thought as probability of jumping from the state |1) to |0), for
example a probability of emitting a photon.

The effect of amplitude damping on the Bloch sphere:

(I‘_x—,l‘_y,l‘;) — (r_r V1 —Ysly VI=yy+rA(l -7))
/T
| N &(p)

-
0> —u,(6 M




Phase damping
This describes loss of quantum information without a loss of energy.

p — &p)=EpE, +EpE|

The operation elements are defined as

| 0 0O 0
E"=( \/1-,1) E'=(0 \/71)
where 1 = 1 — cos®(yAt/2) can be thought as probability of a jump of the relative
phase, like a probability of elastic photon scattering.

The effect of phase damping on the Bloch sphere:

(r_", r.\', r:) - (r_r V l - /l, r}v V ] - /'1, I’:)

p | é(p)

> —u e M




Main approaches to dynamics of open quantum systems

1) Master equation approaches

Liouville-von Neumann equation for density matrix dynamics with suitably chosen
dissipative superoperator, for example:

¢ Lindblad superoperator,
¢ Redfield equations, etc.



2) Stochastic wavefunction dynamics

These techniques are based on the idea that a suitable stochastic process generates
guantum trajectories in the Hilbert space. It often requires stochastic integration of
the Schrédinger equation using for example:

e Stratonovich approach,
e |to approach

An average over stochastic quantum trajectories reproduces the dynamics as given
by the master equation approaches.



3) Hamiltonian approaches

These techniques are based on full system-environment dynamics with complete or
effective description of the environment. They include for example:

e full Hamiltonian dynamics for systems with small environments,
e short-time surrogate Hamiltonian dynamics based on an effective environment
model.



Liouville - von Neumann equation

Liouville - von Neumann equation is a generalized Schriodinger equation, a master
equation, that describes generally non-unitary dynamics of open quantum systems

dp i
a - _h [H,p] + -£(P)

where L(p) is a dissipative superoperator, H is the Hamiltonian of the system, and p
is the density matrix characterizing the state of the system.



Lindblad dissipative superoperator

Generally L(p) can be given in the form

Lip) =) & 2L40L] - L] Ly p}|
k

where {x, vy} = xy+yxis an anticommutator, and the Lindblad operators L, are suitably
chosen generators of the dissipative dynamics, which represent system-environment
interaction, and A is a given rate constant.

This dissipative superoperator was derived by Lindblad within the axiomatic frame-
work for quantum operations, with the central role being played by the complete
positivity axiom.



Example: Pure dephasing of a harmonic oscilator

The Hamiltonian of a quantum harmonic oscillator H = hw(a'a+ 1) = hw(n+ )
) where n is

9| —

satisfies the eigenvalue equation H |n) = E, |n) where E, = hw (n +
some nonnegative integer.

Pure dephasing may come from fluctuations of the Hamiltonian for example due to
inelastic collisions with stray particles and fields. We therefore choose the Hamilto-
nian as the Lindblad generator of pure dephasing L = H. Since the Hamiltonian is
self-adjoint, the Lindblad dissipative superoperator simplifies as follows

Lp) = 25 [2HpH' - (H'H,p|] = 5 [H. [H.p]

The quadratic character of the resulting generator characterizes the Gaussian type
of dissipative process.



The master equation

dp i A

-V — H9 Y H9 H9

o = el - [ [Hpl]
has, for the time-independent Hamiltonian, the solution

_(%[H, 1+ % [H, [H. .]]) t

p(1) =e p(0)

In the energy representation, the elements of the density matrix are explicitely

_; _ 2
Pmn(t) = e L Omn 1= A Wy tpmn(o)

where wy, = w(m — n).



. 2
Pmn(l) =€ { Wmn 1= A Wiy !pmn(o)

We observe that
¢ the diagonal elements of p, the populations, are constant with time,

e the coherences oscillate with time due to coherent part of the dynamics with the
rate proportional to (m — n),

e moduli of the coherences decay with time due to dephasing with the rate propor-
tional to (m — n)>.



