CLASSICAL AND QUANTUM COMPUTATION

QUANTUM ALGORITHMS



Quantum Fourier transform

Quantum Fourier transform is an efficient way of performing a Fourier transform of
guantum mechanical amplitudes.

It does not speed up classical task of performing a Fourier transform of classical data
but it enables phase estimation, the approximation of the eigenvalues of a unitary
operator under certain circumstances.

Phase estimation allows to solve other interesting problems including quantum com-
putation of molecular electronic structure and factorization.



Discrete Fourier transform

Input:
a vector of N complex numbers xg, x1,...,xNy_1;

Output:
a vector of N complex numbers vy, vy, ..., yy— defined by
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Quantum Fourier transform

Quantum Fourier transform on an orthonormal basis |0),|1),...,|N — 1) is defined to
be a linear operator
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Equivalently, the quantum Fourier transform on an arbitrary quantum state is given
as
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where the amplitudes y; are the discrete Fourier transform of the amplitudes x ;.



Quantum Fourier transform circuit

We consider N = 2", n € Z and the computational basis |0),|1),...,|2" — 1).
We write the state |j) in binary representation j = jjj2 ... ja, or more formally
. . oAan—1 - An—2 . Al

j=Jj12 + j22 + ...+ jn2°.

Also, we adopt the notation 0./, - - . jm to represent the binary fraction
2+ jiei/4+ 4 /2L

The new notation allows us to represent quantum Fourier transform in a product
form that is well suited for construction of an efficient quantum circuit computing the
transform. It will also provide insights into the algorithms based upon QFT.



The quantum Fourier transform can be rewritten as follows
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Applying the Hadamard gate to the first qubit of the input state |, ... j,) gives
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since ¢2 V-J1 equals +1 when j; = 0 and equals —1 when j; = 1.
We define a unitary gate R as
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The controlled-R> gate applied on the first qubit, conditional on j>, now gives
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Applying further the controlled-R3, R4 ... R, gates, conditional on j3, j4 etc., we get
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Next we perform a similar procedure onto the second qubit. The Hadamard gate
produces the state
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and the controlled-R, through R,, gates yield the state
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We continue this procedure for each qubit, obtaining a final state
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Eventually, we use the S WAP operations to reverse the order of the qubits to obtain
the state in the desired product form
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Complexity of quantum Fourier transform

How many gates the circuit uses?

qubit | # of Hadamard gates # of controlled-R gates total # of gates
| | n-—1 n
2 | n-—2 n—1
n-—1 | | 2
n | 0 |
Total nin+1)/2

plus 5 S WAP gates

The circuit provides ©(n2) algorithm for performing quantum Fourier transform.

The best classical algorithms for the discrete Fourier transform, such as the Fast
Fourier Transform, require ®(n2") gates to perform the transform on 2" elements.



Example: Three qubit QFT

In this case, we will need only the controlled R, and R; gates. Note that
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The quantum Fourier transform can in this case be written explicitly as a matrix
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Quantum phase estimation subroutine

Suppose a unitary operator U has an eigenvector |u) with eigenvalue ¢2™¢ where the
value of ¢ is unknown. The goal of the phase estimation algorithm is to estimate ¢.

We assume that we have black boxes, also called oracles, capable of preparing the
state |u) and performing the controlled-U?’ operation for suitable nonnegative j € Z.

The phase estimation procedure will use two registers:

- the first containing ¢ qubits in the state |0); r depends on the desired accuracy of the
phase estimation and on the probability of it being successful.

- the second register begins in the state |u) and contains as many qubits as neces-
sary to store it.



Second register

|ut)




Quantum phase estimation circuit
The circuit begins by applying a Hadamard gates to the first register followed by
the application of controlled-U operations on the second register, with U raised to

successive powers of two.

The final state of the first register is
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Suppose that ¢ can be expressed exactly in 1 bits as ¢ = 0.¢...¢;. Then the final
state of the first stage may be written as
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The second stage of the algorithm is to apply the inverse Fourier transform, obtained
by reversing the QFT circuit, on the first register:
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This step can be done in @)(12) steps.
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Example: Three qubit inverse QFT

The inverse QFT circuit is the adjoint of the circuit for QFT: QFTT
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The third stage is the measurement of the first register in the standard computational
basis.

If ¢ was expressed exactly in t qubits, the measurement would give us ¢ exactly.
In general, |¢) is a good estimate of the phase ¢ of an eigenvalue of the unitary

operator U.

To successfully obtain ¢ accurate to n bits with probability of success at least 1 — ¢,

the algorithm requires
1
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Applications
1. Order-finding algorithm

The order of x modulo N is the least positive integer r such that x’modN = 1. This
number can be computed in o(L%) operations using the quantum phase estimation
algorithm, for L-bit integers x and N.

2. Factoring (Shor)

The prime factors of an L-bit integer N can be determined in O(L?) operations by
reducing this problem to finding the order of a random number x co-prime with N.



3. Hidden subgroup problem

If we are given a periodic function, even when the structure of the periodicity is quite
complicated, we can often use a quantum algorithm to determine the periodicity.

All the known fast quantum algorithms can be described as solving the following
problem:

Let f be a function from a finitely generated group G to a finite set X such that f is
constant on the cosets of a subgroup K, and distinct on each coset. Given a quantum
black box for performing the unitary transform U|g)|h) = |g)|h @ f(g)), for g € G and
h € X, find a generating set for K.



Quantum search algorithm (Grover)

Consider an unsorted database with N = 2" entries. The algorithm requires an
N-dimensional state space ‘H, which can be supplied by n = log, N qubits.

Consider the problem of determining the index of the database entry which satisfies
some search criterion.

Let f be the function which maps database entries to 0 or 1, where f(w) = 1 if
and only if w satisfies the search criterion. We are provided with oracle access to a
subroutine in the form of a unitary operator, U,,, which acts as follows (for the w for
which f(w) = 1):

Uplw) = —lw)

Ulx) |x), forall x # w
Our goal is to identfy the index |w).



Algorithm

Let |s) denote the uniform superposition over all states

|
s) = —= ) |x)
7 2
We introduce the operator
Ug = 2|s)(s| — 1

known as the Grover diffusion operator.



1. Initialize the system to the state
| N-l
) =—= ) |x)
P

2. Perform the following Grover iteration r(N) times where r(N) is asymptotically

O(VN):

a) apply the operator U,,;
b) apply the operator Uj.

3. Perform the measurement ). The measurement result will be A,, with the prob-
ability approaching 1 for N >> 1. From 4, w may be obtained.



Grover diffusion operator
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Consider the plane spanned by |s) and |w), or equivalently the plane spanned by |w)
and

, |
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We will consider the first iteration, acting on the initial ket |s). Since |w) is one of the
basis vectors in |s) the overlap
N -1
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In geometric terms, the angle between |s) and |s”) is given as
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The operator U, is a reflection at the hyperplane orthogonal to |w) for vectors in the
plane spanned by |w) and |s"), that is it acts as a reflection across |s’).

The operator U, is a reflection through |s). Therefore, the state vector remains in the
plane spanned by |w) and |s’) after each application of the operators U and U,,.

The operator U U, of each iteration rotates the state vector by an angle
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We need to stop when the state vector passes close to |w); after this, subsequent
iterations rotate the state vector away from |w) , reducing the probability of obtaining
the correct answer.
The exact probability of measuring the correct answer is:
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where r is the number of Grover iterations.

The earliest time we get the near-optimal measurement is r ~ 7 VN /4.



