CLASSICAL AND QUANTUM COMPUTATION

COMPUTATIONAL COMPLEXITY CLASSES

Deterministic computation and deterministic Turing machine
Turing machine consists of
1. afinite alphabet £ containing the blank symbol #;

2. a 2-way infinite tape divided into cells, one of which is a special starting cell.
Each cell contains a symbol from the alphabet X. All but a finite number of cells
contain the special blank symbol *, denoting an empty cell;

3. read-write head that examines a single cell at a time and can move left (<) or
right (—);

4. a control unit along with a finite set of states I" including a distinguished starting
state, y(, and a set of halting states.

control unit

uread-write head

* * * * * * * 1 0 1 0 0 1 1 0 0 1 1 * * * * * * * * * *

The computation of a Turing machine is controlled by a transition function:

0 I'xY — [I'XXZX|e, —}

Example: Unary addition Turing machine

States: I' = {yp.v1. ¥2. 3} with the starting state y; and the halting state y3;
Alphabet: X = {*, 1, +, =} = £y U {*} where X is called external alphabet;

Input: integers a, b > 0 with the symbol + and =

(e.g. 2+ liswritten as '11 + 1 =" on the tape with the leftmost input symbol in the

starting square);

Output: a + b unary

Transition function:

(vo. Lyr, * —) a # 0, reading a

(Y0, +, Y2, %, =) a =0, erase +, read b
(v1.L,y1,1,—) reading a

(v1,+,y2. 1,—) replace + by 1, read b

(Y2, =, Y3, %, <) finish reading b, erase =, halt

READ

WRITE

(70’1' 71'*s_))
(Yot v22" =)
(71’1' 'Y1’1'—))
(71’+’ 72l1’_))
(Y2:= Y3, <)

70’1 71'*’_"
== g 1L
o o 1 1 + 1 — W § * w 1 + 1 — o o
71!1 E Y1l1!_>
lis g I
* * * 1 + 1 — * § * * 1 + 1 — * "
71'+ 72'1'_>
elis g S
* o * 1 + 1 — * i o w 1 1 1 — o o
Y2, 1 Y21,
=t g L
- * » 1 1 1 — k] § k3 3 1 1 1 - * -
Y2,= Yar s €
=% g T
AR ERERRRE * JARAEEERERRE AR
result

Church-Turing thesis

Any algorithm can be realized by a Turing machine.

A Turing machine is a finite object, so it can be encoded by a string. Then for any
fixed alphabet X', we can consider a universal Turing machine U which computes
the function

u([M], x) = ¢pp(x)

where [M] is the encoding of a Turing machine M.

Computable functions and decidable predicates

Every Turing machine M computes a function

by 26 — ZB
where X is the set of all strings over X (external alphabet). ¢s(x) is the output string
for input x. The value of ¢ys(x) is undefined if the computation never terminates.

A function f : £| — X is computable if there exists a Turing machine M such that
dp = f. In this case we say f is computed by M.

A predicate is a function L : ZS — {0, 1}, a function with a Boolean value. A predicate
is called decidable if this function is computable.

Decision problems

An input x € 28 is accepted by an (acceptor) deterministic TM, if the machine termi-
nates in the state y7 on input x and is rejected if it halts in state yf.

Any set of string L C 22‘) is called a language. If M is an acceptor deterministic TM,
then we define the language accepted by M to be
L(M) = {x € X, | M accepts x}

If M halts on all inputs x € X then we say that M decides L.

For a general decision problem II we have the associated language

L= {x € ZZ‘) | x is a natural encoding of a true instance of H}.

Example
PRIME

Input: an integer n > 2.
Question: is n prime?

Lerive = {x | x is the binary encoding of a prime number.}

Complexity
A TM works in time T'(n) if it performs at most T (n) steps for any input of size n.

A function/predicate F on B*, that is on binary strings, is computable/decidable in
polynomial time if there exists a TM that computes it in time T'(n) = poly(n), where n
is the input length.

A class of all functions (predicates) computable (decidable) in polynomial time
is called P.

We say that these functions are efficiently solvable or tractable on deterministic Tur-
ing machine.

P={LC ZS | there is a deterministic TM M which decides L and a polynomial p(n)
such that T'(n) < p(n) for alln > 1}

A TM works in space s(n) if it visits at most s(n) cells for any computation on inputs
of size n.

A function (predicate) F on E* is computable (decidable) in polynomial space if there
exists a TM that computes F and runs in space s(n) = poly(n) where n is the input
length.

A class of all functions (predicates) computable (decidable) in polynomial space
is called PSPACE.

P € PSPACE

It is generally believed that this inclusion is strict though this is an open question.

EXP

tractable
on

classical

computer

Non-deterministic computation
A non-deterministic Turing machine is a hypothetical machine that resembles a deter-
ministic Turing machine but can non-deterministically choose one of several actions

possible in a given configuration. lts transition function is multivalued.

A predicate L belongs to the class NP, Non-deterministic Polynomial, if there exist
a non-deterministic Turing machine M and a polynomial p(n) such that

L(x)=1 = there exists a computational path that gives the answer 'yes’
in time p(|x|), where |x]| is the size of the input;

L(x)=0 = thereis no path with this property.

Alternative definition of the complexity class NP (Kitaev)

Imagine two persons: King Arthur (with polynomially bounded mental capabilities)
and a wizard Merlin (intellectually omnipotent). Arthur is interested in L(x). Merlin
wants to convince Arthur that L(x) is true, but Arthur does not trust Merlin (he is too
smart to be loyal) and wants to make sure that L(x) is true.

So Arthur arranges that, after both he and Merlin see input string x, Merlin writes a
note to Arthur where he proves that L(x) is true. Then Arthur verifies this proof by
some polynomial proof-checking predicate (procedure)

R(x,y) ="y is a proof of L(x)”

where L(x) = 1 implies that Merlin can convince Arthur that L(x) is true by presenting
some proof y such that R(x, y); and L(x) = 0 implies that whatever Merlin says, Arthur
is not convinced: R(x,y) is false for any y.

NP, NP hardness and NP completeness

A predicate L is reducible to a predicate L, if there exists a function f € P such that
Li(x) = Ly(x) for any input string x. We say L « L.

Lemma: Let L| « L», then

(@) IheP = LieP
(@ L¢P = L¢P
(@) LhreNP = L;eNP

Predicate L is NP-hard if any predicate in NP is reducible to it.

Predicate L is NP-complete if it is NP-hard and L € NP.

Example: SAT (satisfiability)
SAT(x) means that x is a propositional formula, containing Boolean variables and
operations (negation, disjunction, conjunction) that is satisfiable, that is "true” for

some values of the variables.

Cook-Levin Theorem:

SAT € NP
SAT € NP-complete

Other examples: 3-COLORING, CLIQUE, ...

P € NP C PSPACE

Again it is believed that the inclusions are strict though this is an open question.
If you could prove that SAT € P, then you would resolve the problem P vs. NP which is one of the Millenium problems

of the Clay Mathematics Institute with a prize of $ 1,000,000.

NP-complete
« SAT

NP

« graph isomorphism

tractable
on

classical

computer

Probabilistic computation

A probabilistic Turing machine can probabilistically choose one of several actions
possible in a given configuration. This is similar to a non-deterministic TM but the
choice is made by coin tossing rather than guessing. PTM is in principle physical.

Let € be a constant such that 0 < € < % A predicate L belongs to the class BPP,
Bounded-error Probabilistic Polynomial, if there exists a probabilistic Turing ma-
chine M and a polynomial p(n) such that the machine M running on input string x
always terminates at most p(|x|) steps, and

Lix)=1 = M gives the answer 'yes’ with probability > 1 — ¢;
Lix)=0 = M gives the answer 'no’ with probability < e.

Example: PRIMALITY, i.e. checking whether a given integer is a prime number.

P € BPP c PSPACE

NP-complete

NP

BPP

* primality testing

tractable on
probabilistic
computer

Quantum computation

A quantum Turing machine can choose a superposition of several actions in a given
configuration. This is somewhat similar to a probabilistic TM.

Let € be a constant such that 0 < € < % A predicate L belongs to the class BQP,
Bounded-error Quantum Polynomial, if there exists a quantum Turing machine M
and a polynomial p(n) such that the machine M running on input string x always
terminates at most p(|x|) steps, and

Lix)=1 = M gives the answer 'yes’ with probability > 1 — ¢;

L(x)=0 = M gives the answer 'no’ with probability < €.

Alternatively using quantum circuit:

A quantum algorithm for the computation of a function F : B* — B" is a classical
algorithm, that is, a deterministic Turing machine, that computes a function of the

form x — Z(x) where Z(x) is a description of a quantum circuit which computes F(x)
on empty input.

The function F is said to belong to the class BQP if there is a quantum algorithm that
computes F in time poly(n).

P € BPP c BQP € PSPACE

tractable
on

quantum

computer

tractable = solvable in polynomial time

NP-complete
* 3-SAT

NP
» graph isomorphism

tractab!e on tractable on
classical probabilistic
computer computer

CLASSICAL AND QUANTUM COMPUTATION

QUANTUM ALGORITHMS

Deutsch-Jozsa algorithm

It computes whether a Boolean function F over n variables is constant or balanced.
A Boolean function F over n variables is said to be

e constant if it gives the same output to all possible inputs;

e balanced if it outputs 0 for half of all possible inputs and 1 to the other hal.

Examples: Constant: Balanced:
Xy X F(x4.x5) F(x4.x,)
00 1 0 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0
10 1 0 0 1 1 0 1 0
11 1 0 0 1 0 1 0 1

Classical complexity is exponential: in the worst case, the function needs to be
applied 2"~ + 1 times to check its output for more than a half of all inputs.

Deutsch-Jozsa algorithm for a two-qubit function

The initial state:

-

0>
input <

0>

\
auxiliary |1>

l01) =10)®@10) ® 1) = |001)

H H- L H M
X X~
H U- AHAQM
H AY y® F(x)
T T T T
6> 16> 0> 165>

Deutsch-Jozsa algorithm for a two-qubit function: Hadamard gates

927
P
0>
input <
0>
_
auxiliary |1>

(1?1 RH® H)(|o> ®10)® (1)) = H0) ® H0)® A1)

| 1 l
lTEuo)Hl)) ®{7§(|0>+|1>) ®l75(|0>—|1>)‘
1 1
§(|00>+|01>+|10>+|11>)®[@(I0>-|1>)‘
H R H M
X X
HH U ‘HHHM
H Hy y®F(x)
T 0 u U
|¢1> |¢2> |¢3> |¢4>

—_— O
v—sOv—sO.S‘

Deutsch-Jozsa algorithm for a two-qubit function: U
1
V2

(1 1
} + Op {?m) ® [\—500) - |1>>‘}

.~ 1 1 ~ 1 1
+ UF {§|10> ® [\—60(» - ID)‘} +UF {5“ e [ﬁam - ID)‘}

A 1
i¢3) = Ur I¢>2)=E(IOO)+I01)+I10)+Ill))®

(10) - Il))]

N 1 |
- UF{§|00)® [ﬁqm ~ 1))

|] |] |
= =100 — (0% = |1 01 — (1Y =10
2(l 8|50 -]+ 0D 8| Tz a0
+ 10)@ _\Lﬁum—u))_ Fe h%(m—m»_)
| |
= —(|00) = |01 10y =11 ®|—(0) = |1
00y = 101) +110) 1) [‘ﬁm |>)‘

Deutsch-Jozsa algorithm for a two-qubit function: readout

Now, we can disregard the auxiliary qubit and focus on the first factor of |¢3) above.
We first rewrite it as

! 1 - 1
5(|00>-|01>+|10>—|11>)=\ﬁ(w)ﬂl)) ®[—(I0>—Il>)‘

v

and then perform the Hadamard rotations

® H

(10) - Il))‘

~ 1 1 |
lpg) = H lﬁ(m) + 1)) lﬁ

pu—y

= 0)®|1)=101)
The measurement of each qubit reveals that the function is balanced.

The function is constant if the measurement of each input qubit at the end of
the computation yields 0. Otherwise the function is balanced.

Deutsch-Jozsa algorithm

Inputs:
A black box O'F which performs the transformation |x)|ly) — [x)|ly @ F(x)) for x €
{0,1,....2" Yy and F(x) € {0,1). Itis promised that the function F(x) is either con-

stant or balanced.

Outputs:
0 iff F is constant.

Complexity/Runtime:
One evaluation of Ur. Always succeeds.

Exponential speed-up compared to classical algorithm

