
MP465 – Advanced Electromagnetism

Solutions to Problem Set 5

1. (a) This is straightforward if we use the following: if the current den-

sity has the form ~J(t, ~r) = Re[ ~̃J(~r)e−ι̇ωt], then the electric dipole
moment is ~p(t) = Re[~̃p0e

−ι̇ωt] where

~̃p0 =
ι̇

ω

∫
~̃J(~r) d3~r.

To use this, we need ~̃J , but we’ve seen how to get this: since ~̃J is a
complex vector, we can write it in terms of its real and imaginary

parts ~JR and ~JI as ~̃J = ~JR + ι̇ ~JI , and we’ve shown before that
doing this gives ~J = ~JR cosωt+ ~JI sinωt. For the current density
given, this means that ~JR = ~0 and ~JI = I0(1 − |y|/L)δ(x)δ(z)êy
and thus

~̃J(~r) = ι̇I0

(
1− |y|

L

)
δ(x)δ(z)êy

and thus

~̃p0 =
ι̇

ω

∫
ι̇I0

(
1− |y|

L

)
δ(x)δ(z)êy d3~r

= −I0êy
ω

∫ (
1− |y|

L

)
δ(x)δ(z) dx dy dz

= −I0êy
ω

∫ L

−L

(
1− |y|

L

)
dy

= −2I0êy
ω

∫ L

0

(
1− y

L

)
dy

where in the final step we’ve used the fact that the integrand is
an even function of y and |y| = y if y > 0. The integral is easily
done, with the result being ~̃p0 = −I0Lêy/ω.
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(b) In the far-zone approximation, the magnetic field amplitude is

~̃B(~r) ≈ µ0ω
2

4πc

êr × ~̃p0

r
eι̇kr

and since ~̃E ≈ c ~̃B × êr, the time-averaged Poynting vector is

〈~S〉 =
1

2µ0

~̃E × ~̃B∗

≈ µ0ω
4

32π2c

|êr × ~̃p0|2

r2
êr

and since the surface area element of a sphere of radius r is d~σ =
r2dΩ êr, the power distribution is

dP̄

dΩ
=
〈~S〉 · d~σ

dΩ

≈ µ0ω
4|êr × ~̃p0|2

32π2c
.

We have the dipole amplitude, so we can compute the cross-
product:

êr × ~̃p0 = (sin θ cosφ êx + sin θ sinφ êy + cos θ êz)× (−I0L

ω
êy)

=
I0L

ω
(cos θ êx − sin θ cosφ êz)

and the norm-squared of this is I2
0L

2(cos2 θ+sin2 θ cos2 φ)/ω2. We
could leave it like this, but I’m going to use cos2 θ = 1 − sin2 θ
and cos2 φ = 1− sin2 φ to turn it into the slightly simpler-looking
1− sin2 θ sin2 φ to get

dP̄

dΩ
≈ µ0I

2
0L

2ω2

32π2c

(
1− sin2 θ sin2 φ

)
.

2. (a) We use the continuity equation to prove this. The definition of
the electric dipole moment is ~p =

∫
ρ~r d3~r, so the time-derivative
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of the ith-component is

ṗi(t) =
d

dt

∫
ρ(t, ~r)xi d

3~r

=

∫
∂ρ

∂t
(t, ~r)xi d

3~r

=

∫ (
−~∇ · ~J(t, ~r)

)
xi d

3~r

= −
∫ [

~∇ ·
(
~J(t, ~r)xi

)
− ~J(t, ~r) · ~∇xi

]
d3~r

= −
∮

Σ

~J(t, ~r)xi · d~σ +

∫
~J(t, ~r) · êi d3~r

where Σ is the “surface at infinity” and we’ve used ~∇xi = êi. Mak-
ing the usual assumption that all sources are zero at infinity, the
surface integral vanishes and the integrand of the second integral
is Ji(t, ~r), and thus we see

~̇p(t) =

∫
~J(t, ~r) d3~r.

(b) Suppose that at time t = 0 the charge is at position ~r0, has ve-
locity ~u0 and undergoes a constant acceleration ~a. We know from
elementary mechanics that its position at time t is

~r(t) = ~r0 + ~u0t+
1

2
~at2.

We know that for n point charges q1, . . . , qn located at positions
~r1, . . . , ~rn, the electric dipole moment is

~p =
n∑
i=1

qi~ri

and thus our single point charge at ~r(t) has

~p(t) = q

(
~r0 + ~u0t+

1

2
~at2
)
.
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Two time derivatives yields ~̈p(t) = q~a, so the far-zone magnetic
field is

~B(t, ~r) ≈ µ0

4πc

~̈p(t− r/c)× êr
r

=
µ0

4πc

q~a× êr
r

.

The far-zone electric field is

~E(t, ~r) ≈ c ~B(t, ~r)× êr

so the far-zone Poynting vector (not time-averaged) is

~S =
1

µ0

~E × ~B

≈ c

µ0

(
~B × êr

)
× ~B

≈ c

µ0

| ~B|2êr

since ~B and êr are normal to one another. Thus, we find

~S ≈ µ0q
2

16π2c

|~a× êr|2

r2
êr

=
q2

16π2ε0c3

|~a× êr|2

r2
êr

where we’ve followed the convention of expressing µ0 as 1/ε0c
2

when our sources are electric in nature. The total power radiated
by this charge through a sphere of very large radius r is therefore

P =

∫
~S · d~σ

≈
∫ (

q2

16π2ε0c3

|~a× êr|2

r2
êr

)
·
(
r2dΩ êr

)
=

q2

16π2ε0c3

∫
|~a× êr|2dΩ.

This is as far as we can go without explicitly introducing a coor-
dinate system. We’re free to choose the most convenient one, so
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pick one where the positive z-axis is aligned with the acceleration
~a. This means that the angle between ~a and êr is the spherical
coordinate angle θ, and so |~a × êr| = a sin θ, where a = |~a|. In
spherical coordinates, the solid angle element is dΩ = sin θ dθ dφ,
and since we’re integrating over the entire sphere,

P ≈ q2

16π2ε0c3

∫
(a2 sin2 θ)(sin θ dθ dφ)

=
q2a2

16π2ε0c3

(∫ π

0

sin3 θ dθ

)(∫ 2π

0

dφ

)
.

The first integral is 4/3 and the second is 2π, so we end up with
a total radiated power of

P ≈ q2a2

6πε0c3
.

Note this depends on a2, so the same power is radiated regardless
of if the charge is accelerating or decelerating.

A comment: our form for ~r(t) is a nonrelativistic formula, so
the above isn’t quite correct for an extremely fast-moving charge.
Thus, if we wanted to find the power lost as a charged particle
falls into a black hole, for example, we’d have to do a more so-
phisticated calculation beyond the scope of this module. But it
can be done.

3. The brute-force way to do this is to use ~v = vyêy + vz êz, do all the
cross- and dot-products and solve the equations, but here’s a slightly
easier way to do it...

Since the parallel component points in the same direction as the ve-
locity, this means ~E · ~v = E‖v and ~B · ~v = B‖v where v = |~v|. Thus,

the transformation laws give E ′‖v = ~E · ~v and B′‖v = ~B · ~v. But since

~B′ = −λ~E ′/c, their parallel components have the same relation and

thus B′‖v = −λE ′‖v/c. The upshot is that ~B · ~v = −λ~E · ~v/c. However,
the fields are given and since ~v = vyêy + vz êz, we find

−
√

2

c
E0vy = −λ

c
E0vy.
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From this you might be tempted to conclude that λ =
√

2, but this
assumes that vy 6= 0, which we don’t want to assume. Thus, the only
thing we can say from the above is that (λ−

√
2)vy = 0.

Now for the perpendicular components: suppose that n̂ = ~v/v. We

know that E‖ = ~E ·n̂, so the part of the vector parallel to the velocity is

( ~E · n̂)n̂. The remainder of the vector is the perpendicular component,

so ~E⊥ = ~E − ( ~E · n̂)n̂, since the two components must add up to

the total vector. Similarly, ~B⊥ = ~B − ( ~B · n̂)n̂ and the same for the
primed fields. We therefore see that the transformation laws for the
perpendicular components are

~E ′ −
(
~E ′ · n̂

)
n̂ = γ(v)

[
~E −

(
~E · n̂

)
n̂+ ~v × ~B

]
,

~B′ −
(
~B′ · n̂

)
n̂ = γ(v)

[
~B −

(
~B · n̂

)
n̂− ~v

c2
× ~E

]
.

Since ~B′⊥ = −λ~E ′⊥/c, the above gives us (after cancelling out a γ(v))

~B −
(
~B · n̂

)
n̂− ~v

c2
× ~E = −λ

c

[
~E −

(
~E · n̂

)
n̂+ ~v × ~B

]
but since we already know from the parallel components that ~B · n̂ =
−λ~E · n̂/c, we obtain

~B − ~v

c2
× ~E = −λ

c

[
~E + ~v × ~B

]
.

Now we’ll put in the explicit forms for ~v, ~E and ~B, and it’s easy to see
that we get (after dividing out common factors of E0 and powers of c)
the following three equations from the x-, y- and z-components:

√
2 +

vz
c

= −
√

2λvz
c

,

−
√

2 = −λ

(
1 +

√
2vz
c

)
,

0 =
λ
√

2vy
c

.

Now, λ > 0, so the last of these immediately tells us that vy = 0, so
the boost is purely in the z-direction. (Note that this is the direction
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perpendicular to both fields; more on that in a bit.) Conveniently,
this also solves the equation we obtained first, (λ−

√
2)vy = 0. We’re

therefore left with two equations for two unknowns, and now let’s solve
them: multiply the first through by 1+

√
2vz/c and then use the second

to get (√
2 +

vz
c

)(
1 +

√
2vz
c

)
= −

√
2λvz
c

(
1 +

√
2vz
c

)

=

√
2vz
c

[
−λ

(
1 +

√
2vz
c

)]

=

√
2vz
c

(
−
√

2
)

and this can be rearranged to give the quadratic equation
√

2 v2
z+5cvz+√

2 c2 = 0. This has the two roots(
−5±

√
17

2
√

2

)
c

but you can easily confirm with a calculator that choosing the minus
gives vz ≈ −3.23c, which is unphysical since the speed must be less
than c. Thus, the boost that makes the fields antiparallel with one
another is obtained with the relative velocity

~v =

(
−5 +

√
17

2
√

2

)
c êz

≈ −0.31c êz.

(We didn’t ask for λ, but if you put this velocity into the equations and
solve for it, you get

λ =
3 +
√

17

2
√

2

which is approximately 2.52.)

Now, even though this was a specific case, we’re now able to state
something in general: suppose we have a nonzero electric and mag-
netic field in some frame S. If the angle between them is less than
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90◦, then there exists a frame, boosted in the direction of ~E × ~B, in
which the fields are parallel. If the angle is greater than 90◦ (the case
we had above), there’ll be a frame boosted in this direction (the neg-
ative z-direction above) in which they’re antiparallel. And if they’re
perpendicular, they’ll be perpendicular in all frames, regardless of the
boost.

(The proof of this theorem is not something we’ll do here, but it uses
the result of the very next problem. Don’t you just love these segues?)

4. This is actually pretty easy if we use some of the matrix trickery I
described in lecture. We said that both ?F µν and Fµν can be thought
of as the components of two 4 × 4 matrices which we’ll call F̃ and F
respectively; we gave their forms as

F =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 ,

F̃ =


0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

 .

I reminded you that if M and N are two n× n matrices, then the ijth

element of the matrix MN is

(MN)ij =
n∑
k=1

MikNkj

so any time that adjacent indices (the ks in the above) are summed
over, it’s matrix multiplication. This means that the matrix F̃F has
components

(
F̃F
)µ

λ =
3∑

ν=0

(F̃ )µν(F )νλ

=
3∑

ν=0

(F̃ )µν(F T )λν
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since transposition of a matrix switches the order of its indices. How-
ever, F is antisymmetric, so F T = −F . But the components of these
are just given by the field strength and dual field strength, and if we
adopt Einstein summation convention, we see the elements of F̃F are(

F̃F
)µ

λ = − ? F µνFλν .

Now, let λ = µ and sum over all values; this is the quantity we’re after.
From the above, we see this is

?F µνFµν = −
3∑

µ=0

(
F̃F
)µ

µ.

But the sum over the diagonal elements of a matrix is just the trace!
This means

?F µνFµν = −tr
(
F̃F
)

and so all we need to do is multiply the two matrices given above and
take their trace, and we’ve got our result.

Now, we could do this in all its horrible splendour, but because we’re
going to take the trace, we’re actually only interested in the diagonal
elements of F̃F , and they can be shown to all be equal to(
F̃F
)0

0 =
(
F̃F
)1

1 =
(
F̃F
)2

2 =
(
F̃F
)3

3 =
1

c
(ExBx + EyBy + EzBz)

=
1

c
~E · ~B

and so

?F µνFµν = −tr
(
F̃F
)

= −
[(
F̃F
)0

0 +
(
F̃F
)1

1 +
(
F̃F
)2

2 +
(
F̃F
)3

3

]
= −4

c
~E · ~B

as desired.
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Finally, since this quantity is constructed by contracting two 4-vector
indices, with no uncontracted indices remaining, it’s a Lorentz-invariant
quantity.

Now that we have this, it’s nearly trivial to prove the last part of the
theorem quoted at the end of Problem 3: if ~E and ~B are perpendicular
in some frame S, then ~E · ~B = 0 in that frame. But this is Lorentz-
invariant (the constant −4/c doesn’t change that), so in a different
inertial frame S ′, the inner product of the fields in that frame must
also be zero, i.e. they’re perpendicular regardless of how S and S ′ are
related. This doesn’t means ~E ′ = ~E and ~B′ = ~B, just that the fields
transform such that there’s always a right angle between them.
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