
MP465 – Advanced Electromagnetism

Solutions to Problem Set 4

1. (a) Just to make things easier, we’ll define A = |Ex| and B = |Ey|,
which gives the x- and y-components of ~E as Ex = A cos θ and
Ey = B cos(θ − δ). But the y-component may be rewritten Ey =
B(cos θ cos δ + sin θ sin δ), and thus we can solve for the sine and
cosine of θ:

cos θ =
Ex
A
,

sin θ =
Ey

B sin δ
− cos θ cos δ

sin δ

=
Ey

B sin δ
− Ex cos δ

A sin δ
.

Hopefully we all know that sin2 θ + cos2 θ = 1, and so

1 =

(
Ey

B sin δ
− Ex cos δ

A sin δ
.

)2

+

(
Ex
A

)2

=
1

sin2 δ

(
E2
y

B2
− 2ExEy cos δ

AB
+
E2
x cos2 δ

A2
+
E2
x

A2
sin2 δ

)
so by using sin2 δ + cos2 δ = 1 and multiplying through by sin2 δ,
we get

E2
x

A2
− 2ExEy cos δ

AB
+
E2
y

B2
= sin2 δ

as desired. Thus, in the ExEy-plane, the tip of ~E will always be on
the curve this equation describes, moving around it anticlockwise
as θ increases.

Now, for a bit on the curves known as conic sections. These
curves – ellipses, parabolae and hyperbolae – have been known
and studied since ancient times, and show up in a wide variety
of situations. For examples, the paths of objects around a large
central mass are all conic sections.
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When we describe a conic section in the xy-plane, all of them have
the same basic form, namely, they all consist of the points (x, y)
which satisfy a quadratic equation of the form ax2 + bxy + cy2 +
dx + ey + f = 0 for some constants a, b, c, d, e and f (where at
least one of a, b and c is nonzero). We see that if we interpret x
and y in this equation as Ex and Ey, then the curve we have is of
this form with a = 1/A2, b = −2 cos δ/AB, c = 1/B2, d = e = 0
and f = − sin2 δ. Thus, we have some sort of conic section.

But which sort is it? If we go to the Wikipedia article “Conic
Section”, we see that the answer depends on the value of the
discriminant b2 − 4ac. If it’s negative, we have an ellipse; zero, a
parabola; and positive, a hyperbola. The values we have for our
curve give b2−4ac = 4(cos2 δ−1)/A2B2 = −4 sin2 δ/A2B2. Thus,
if δ is neither 0 nor π, this is negative and so we have an ellipse.
(In the case δ is one of these values, we see that the equation may
be written as (

Ex
A
± Ey
B

)2

= 0

and we have the linearly-polarised cases Ey = ∓BEx/A.)

(b) Now, a possible clarification: as you probably all know, one num-
ber we can assign to an object’s orbit around a central mass is
its eccentricity e (not to be confused with Euler’s number, the
fundamental unit of charge or the coefficient in the conic section
equation above!), with this number telling us if we have a ellipse
(0 ≤ e < 1), parabola (e = 1) or hyperbola (e > 1).

This is different from the ellipticity that we’re after; that’s defined
only for ellipses and not parabolae or hyperbolae. However, it’s
related to the eccentricity: if an ellipse has a semimajor axis of
length α and a semiminor axis of length β, the ellipticity is defined
as ε = β/α and the eccentricity is defined as e =

√
1− β2/α2, so

we see that ε =
√

1− e2. Thus, if we know the eccentricity of an
ellipse, we can find the ellipticity.

Luckily, the Wikipedia article has a formula for e in terms of the
general conic section equation: e is the unique positive solution to
the quartic equation (quadratic in e2)

∆e4 + [(a+ c)2 − 4∆]e2 − [(a+ c)2 − 4∆] = 0
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where ∆ = ac− b2/4, which for us is sin2 δ/A2B2. If we now put
in a = 1/A2 and c = 1/B2, we get

sin2 δ

A2B2
e4 +

[(
1

A2
+

1

B2

)2

− 4 sin2 δ

A2B2

]
e2 −

[(
1

A2
+

1

B2

)2

− 4 sin2 δ

A2B2

]
= 0,

which, with a bit of cleaning up, may be rewritten as

(A2B2 sin2 δ)e4 +
[
A4 + 2A2B2(1− 2 sin2 δ) +B4

]
e2

−
[
A4 + 2A2B2(1− 2 sin2 δ) +B4

]
= 0

Solving for e2 gives the two solutions

−
[
A4 + 2A2B2(1− 2 sin2 δ) +B4

]
± (A2 +B2)

√
A4 + 2A2B2(1− 2 sin2 δ) +B4

2A2B2 sin2 δ

but since e is real, we need the above to be positive, so we pick
the + of the ±:

e2 =
(A2 +B2)

√
A4 + 2A2B2(1− 2 sin2 δ) +B4 −

[
A4 + 2A2B2(1− 2 sin2 δ) +B4

]
2A2B2 sin2 δ

.

But ε2 = 1− e2, so a bit of computation gives

ε2 =
A4 + 2A2B2(1− sin2 δ) +B4 − (A2 +B2)

√
A4 + 2A2B2(1− 2 sin2 δ) +B4

2A2B2 sin2 δ
.

Now, notice that

A4 + 2A2B2(1− sin2 δ) +B4 =
1

2

[
2A4 + 4A2B2(1− sin2 δ) + 2B4

]
=

1

2

[
A4 + 2A2B2 +B4

+A4 + 2A2B2(1− 2 sin2 δ) +B4
]

=
1

2
(A2 +B2)2 +

1

2

[
A4 + 2A2B2(1− 2 sin2 δ) +B4

]
.

If we now use 1− 2 sin2 δ = cos 2δ, then we can use all the above
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to rewrite the numerator of the above fraction as

A4 + 2A2B2(1− sin2 δ) +B4 − (A2 +B2)
√
A4 + 2A2B2(1− 2 sin2 δ) +B4

=
1

2

[
(A2 +B2)2 + (A4 + 2A2B2 cos 2δ +B4)

−2(A2 +B2)
√
A4 + 2A2B2 cos 2δ +B4

]
=

1

2

[
(A2 +B2)2 − 2(A2 +B2)

√
A4 + 2A2B2 cos 2δ +B4

+(
√
A4 + 2A2B2 cos 2δ +B4)2

]
=

1

2

[
A2 +B2 −

√
A4 + 2A2B2 cos 2δ +B4

]2
and so

ε2 =

[
A2 +B2 −

√
A4 + 2A2B2 cos 2δ +B4

]2
4A2B2 sin2 δ

.

Since ε is the ratio of two positive quantities, it must be positive
as well, so the positive square root of the above is

ε =
A2 +B2 −

√
A4 + 2A2B2 cos 2δ +B4

2AB| sin δ|
.

Whew. A lot of work, but this quantity really is used by experi-
mentalists when quantifying the particular polarisation of an EM
wave.

Now to take the limits mentioned. As δ gets very small we can
replace the sine and cosine by the first few terms of their Taylor
series expansions around zero, i.e. sin δ ≈ δ and cos 2δ ≈ 1− 2δ2.
We see that the square root becomes

√
A4 + 2A2B2 cos 2δ +B4 ≈

√
A4 + 2A2B(1− 2δ2) +B4

=
√
A4 + 2A2B2 +B4 − 4A2B2δ2

=

√
(A2 +B2)2

(
1− 4A2B2

(A2 +B2)2
δ2
)

≈ (A2 +B2)

(
1− 2A2B2

(A2 +B2)2
δ2
)
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and so the numerator of ε is approximately 2A2B2δ2/(A2 + B2).
The denominator is approximately 2AB|δ|, so overall, ε ≈ AB|δ|/(A2+
B2) for small values of δ, and we see that ε→ 0 as δ goes to zero.

If δ is very close to π, we can define ξ = π − δ and so δ near π
means ξ is near zero. Now, cos 2δ = cos(2π − 2ξ) = cos 2ξ and
sin δ = sin(π− ξ) = sin ξ, so we see that ε depends on ξ the exact
same way as it does on δ, so in the limit ξ → 0, the ellipticity goes
to zero. Thus, for both instances of linear polarisation, ε = 0.

Now, if A = B, a little maths gives

ε =
2−

√
2(1 + cos 2δ)

2| sin δ|

and since 1 + cos 2δ = 2 cos2 δ, ε = (1 − cos δ)/| sin δ|. Thus, we
easily see that δ = ±π/2 gives ε = 1 and thus describes circular
polarisation.

Note that the ellipticity doesn’t give all details about the polar-
isation. As we’ve just seen, ε = 0 doesn’t tell us which linear
polarisation (fully in phase vs. fully out of phase) we have, nor
does ε = 1 distinguish between left-circular and right-circular po-
larisation. But it does immediately tell us the ratio between the
maximum and minimum values of | ~E|, which can be useful.

2. As we’ve mentioned (and as we saw with some actual numbers in Prob-
lem Set 3), for a lot of materials, their magnetic susceptibilities are so
small that their permeabilities are extremely close to µ0. Therefore, as
long as we don’t need to be too precise, µ ≈ µ0 can often be assumed.

This has an added advantage: recall that three of the conditions at the
boundary between two media are that B⊥ and ~H‖ must be continuous

across the boundary. In the two media, ~H1 = ~B1/µ1 and ~H2 = ~B2/µ2,
so on the boundary

1

µ1

(
~B1

)
‖

=
1

µ2

(
~B2

)
‖
.

But if µ1 and µ2 are both very close to µ0, this means that

1

µ0

(
~B1

)
‖
≈ 1

µ0

(
~B2

)
‖
⇒

(
~B1

)
‖
≈
(
~B2

)
‖
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at the boundary. In other words, all three components of the magnetic
field are (approximately) continuous across the boundary; we don’t
have to worry about the magnetic intensity at all. But make sure you
realise this is only when we can reasonably take the permeabilities to
be µ0; in cases where we can’t do that, we need to treat B⊥ and ~H‖
separately ‘qlike we did in the example done in lecture.

But in this problem, we are making this approximation, so we can
assume we match all components of ~B at the boundary. We still have
to treat the continuity of D⊥ and ~E‖ separately, because permittivities
can take on a very wide range of values (again, as we saw in PS3).

(a) So let’s do it. As in lecture, we take a planar boundary at z = 0
with medium 1 on the negative side and medium 2 on the positive
side. In medium 1, we’ll have an incident electric field ~EI and a
reflected field ~ER and in medium 2 only a transmitted field ~ET
with wave vectors ~kI , ~kR and ~kT respectively. In all cases, the
associated magnetic fields will be ~Ba = ~ka × ~Ea/ω where a = I,
R or T . As stated, we can assume the basic laws of optics, so we
immediately know that if ~kI is as given in the problem, then

~kR =
n1ω

c
(sin θR êx − cos θR êz) ,

~kT =
n2ω

c
(sin θT êx + cos θT êz)

where θR = θI and n2 sin θT = n1 sin θI .

The case we did in lecture had ~EI in the same plane as the three
wave vectors; now we consider the complementary case in which
the incident electric field is normal to this plane, namely,

~EI = Re[ ~̃E0e
ι̇(~kI ·~r−ωt)]

= Re[EIeι̇(
~kI ·~r−ωt)]êy

where we assume we know the complex number EI . However,
we will not assume that the reflected and transmitted field are
normal to this plane (although we’ll find that as a result), only
that they’re perpenducular to their wave vectors. Thus, as we did
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in lecture, we take their amplitudes to have the form

~̃E0R = −ER (cos θR êx + sin θR êz) + ẼRyêy,

~̃E0T = ET (cos θT êx − sin θT êz) + ẼTyêy.

We know that D⊥ must be the same on either side of the boundary,

and this means ε1( ~̃EI + ~̃ER)z = ε2( ~̃ET )z. Since the incident field
has no z-component, this gives −ε1ER sin θR = −ε2ET sin θT . The

continuity of the parallel components of ~E implies ( ~̃EI + ~̃ER)x =

( ~̃ET )x and ( ~̃EI + ~̃ER)y = ( ~̃ET )y, which, for the fields given, means
that −ER cos θR = ET cos θT and EI + ẼRy = ẼTy respectively.

We already have two equations for ER and ET :

ε1ER sin θR − ε2ET sin θT = 0,

ER cos θR + ET cos θT = 0,

or, in matrix form,(
ε1 sin θR −ε2 sin θT
cos θR cos θT

)(
ER
ET

)
=

(
0
0

)
.

This has a nonzero solution only if the determinant of the 2 × 2
matrix is zero: it’s ε1 sin θR cos θT+ε2 sin θT cos θR. But if all angles
are between 0 and π/2, both terms are strictly positive and thus
this determinant cannot be zero. (The θ = 0 and θ = π/2 cases
must be looked at separately, but the result is the same.) Thus,
the only solution is the null vector and so ER = ET = 0 and we
see that if the incident electric field is normal to the plane of the
three wave vectors, so are the reflected and transmitted fields.

Now for the magnetic field: in our approximation where all per-
meabilities are the same, all three components must be continuous
across the boundary, and their amplitudes are

~̃B0 =
~kI
ω
× ~̃E0 =

n1EI
c

(− cos θI êx + sin θI êz) ,

~̃B0R =
~kR
ω
× ~̃E0R =

n1

c

[
ẼRy (cos θRêx + sin θRêz) + ERêy

]
,

~̃B0T =
~kT
ω
× ~̃E0T =

n2

c

[
ẼTy (− cos θT êx + sin θT êz) + ET êy

]
.
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We already know that ER = ET = 0 and thus the y-components au-
tomatically agree on either side of the boundary. Matching the x-
and z-components yields, with a bit of cleaning up, −n1EI cos θI +
n1ẼRy cos θR = −n2ẼTy cos θT and n1EI sin θI + n1ẼRy sin θR =
n2ẼTy sin θT . The second we already know, since n1 sin θI = n1 sin θR =
n2 sin θT and we recover EI + ẼRy = ẼTy. Thus, in matrix form,
our two equations giving ẼRy and ẼTy are(

1 −1
n1 cos θR n2 cos θT

)(
ẼRy
ẼTy

)
=

(
−1

n1 cos θI

)
EI .

and solving this gives

ẼRy =

(
n1 cos θI − n2 cos θT
n1 cos θI + n2 cos θT

)
EI ,

ẼTy =

(
2n1 cos θI

n1 cos θI + n2 cos θT

)
EI .

Thus, with ~̃E0 = EI êy, the reflected and transmitted electric fields
are

~ER =

(
n1 cos θI − n2 cos θT
n1 cos θI + n2 cos θT

)
Re
[
~̃E0e

ι̇(~kR·~r−ωt)
]
,

~ET =

(
2n1 cos θI

n1 cos θI + n2 cos θT

)
Re
[
~̃E0e

ι̇(~kT ·~r−ωt)
]
.

(b) In lecture, we derived forms for the two coefficients: if the three
fields have the forms

~EI = Re
[
~̃E0e

ι̇(~kI ·~r−ωt)
]
,

~ER = Re
[
~̃E0Re

ι̇(~kR·~r−ωt)
]
,

~ET = Re
[
~̃E0T e

ι̇(~kT ·~r−ωt)
]
,

then

R =
| ~̃E0R|2

| ~̃E0|2
, T =

n2µ1 cos θT
n1µ2 cos θI

| ~̃E0T |2

| ~̃E0|2
.
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In (a), we found

~̃E0 = EI êy,

~̃E0R =

(
n1 cos θI − n2 cos θT
n1 cos θI + n2 cos θT

)
~̃E0,

~̃E0T =

(
2n1 cos θI

n1 cos θI + n2 cos θT

)
~̃E0

so

| ~̃E0R|2

| ~̃E0|2
=

(
n1 cos θI − n2 cos θT
n1 cos θI + n2 cos θT

)2

| ~̃E0T |2

| ~̃E0|2
=

(
2n1 cos θI

n1 cos θI + n2 cos θT

)2

.

Thus, since we assume µ1 ≈ µ2 ≈ µ0,

R =
n2
1 cos2 θI − 2n1n2 cos θI cos θT + n2

2 cos2 θT
n2
1 cos2 θI + 2n1n2 cos θI cos θT + n2

2 cos2 θT

T =
4n1n2 cos θI cos θT

n2
1 cos2 θI + 2n1n2 cos θI cos θT + n2

2 cos2 θT

and so

R + T =
(n2

1 cos2 θI − 2n1n2 cos θI cos θT + n2
2 cos2 θT ) + 4n1n2 cos θI cos θT

n2
1 cos2 θI + 2n1n2 cos θI cos θT + n2

2 cos2 θT

=
n2
1 cos2 θI + 2n1n2 cos θI cos θT + n2

2 cos2 θT
n2
1 cos2 θI + 2n1n2 cos θI cos θT + n2

2 cos2 θT

which is, of course, 1.
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