MP465 — Advanced Electromagnetism

Solutions to Problem Set 3

1. The point of this problem is just to get you used to the types of manip-
ulations you need to do when using the Levi-Civita symbol, because it
appears surprisingly frequently throughout maths and phsyics...

(a) The curl of a vector field b is, component-wise,
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where all sums will be from 1 to 3 (or over z, y and z — same
thing). Thus,
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Now, because the Levi-Civita symbol is totally antisymmetric,

Emkt = —€kme = €xem and so the above sum may be rewritten as
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Now, if we do the sums over 7, k£ and ¢ successively, we get
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If we swap the two vectors, we obviously get
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so adding the two gives
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The second and last terms together are the i*®-component of —(a-
V)b — (b-V)d, and the product rule tells us that [V(a - b)]; is the
first plus the third terms, and so we’ve proved what we wanted:
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(b) For this problem, we need to be cogniscent of the fact that the
derivative in the curl acts on a product of the components of @ and
b and to use the appropriate theorem of calculus. More specifically,
since
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then
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Again using €,,1s = €xe, and summing over m gives
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As we did in (a), we now do the sums over j, k and ¢, in that
order:
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which we recognise as the i*" component of
Vx(ixb) = a(Vb)+(b-V)a-5(V-a)-(a-V)0
and that’s exactly what we wanted to prove.

2. For this problem, we need to determine the polarisability and magneti-
sation induced by the given fields in the materials presented. Recall
that the definitions of the electric and magnetic susceptibilities are

ﬁ = 6()XeE_'7 M - Xm]:j



The first of these will give the polarisability directly from the electric
field, but we have to manipulate the second a bit: recall that H=28 /1,
where 1 = (1 4 x.m) o is the material’s permeability. This means that
we get the magnetisation from the magnetic field via M = Xmé /.

But this isn’t all: we want the electric and magnetic dipole of each
constituent atom/molecule in our material, which means we need a
number density py for each material, i.e. the number of particles per
unit volume. Now, if the total volume is V', then it has a total mass
pmV, where pys is the mass density of the material. If the mass of each
constituent is A (we're using m, M and p for other quantities, so best
to use a nonstandard variable for mass here), then N = pp/V/A, so
pn = N/V = py/A is the number density. Thus, if p and m are the
constituent dipoles, then P= pnp and M = pnm. Thus,
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So now we're in a position to put in some numbers. Me, whenever
I'm confronted with the need for physical quantities, I go straight to
www.engineeringtoolbox.com, and I get these:

material || mass density | relative permittivity | relative permeability
water 1000 80 0.999992
wood 500-800 2-6 1.00000043
air 1.204 1.000536 1.00000037

(All densities are in kilogrammes per cubic metre, and for air and water,
['ve taken the values at 20°C.) Note that it’s the relative permittivity
€/eo and relative permeability /o listed above, and we can see that
i = pio holds for all three materials (as we mentioned before). However,
= (14 xm) o gives Xm = 1/ 1o— 1, so we can’t use that approximation
to get that, because they’d all be zero. But they’re easily computed
from the exact values above: for water, wood and air, we get magnetic
susceptibilities of —8.0x 1076, 4.3x 107" and 3.7x 10~ " respectively. (So
water is diamagnetic and wood and air are paramagnetic.) Similarly,
Xe = €/€p — 1 and so we get electric susceptibilities of 79, 1-5 and
5.36 x 1074



Now we need constituent masses. Water is easy: it’s very close to 18
times the proton mass 1.67 x 10727 kg, so we’ll use that. Similarly, if
we take air to be 20% Oz and 80% Nj, we get 28.8 times the proton
mass. Thus, we have everything we need for (a) and (c), and putting
in the numbers gives the electric dipoles to be 3.15 x 1073*A -m - s
for water and 2.84 x 10736 A - m - s for air, both in the same direction
as the electric field. The magnetic dipoles are 9.57 x 1073 A - m? for
water and 5.88 x 1072 A - m? for air, with the former in the opposite
direction to B and the latter in the same direction.

Now, wood is the tricky one, because obviously not all wood is the
same, which is why there’s a range of values above. So let’s take the
midpoints, i.e. a mass density of 650 kg - m~2 and an electric suscepti-
bility of 3. Also, what we take as a constituent mass is not obvious, so
we’ll make a very crude approximation that it’s made entirely of cellu-
lose, which Wikipedia tells me has a molar mass of 162.1406 grammes
per mole, so we’ll take 162 proton masses as its constituent mass. With
these assumptions, we get an electric dipole of 1.66 x 1073¢ A -m-s and
7.12 x 1073 A - m? for the magnetic dipole, both in the same direction
as the fields inducing them.

. We’ll do this and the next problem by computing both sides of the
equations given and showing that they’re equal rather than deriving
them from scratch.

First off, for a linear medium, the energy density and Poynting vector
are
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we get
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Now let’s compute the divergence of the Poynting vector using the

Levi-Civita symbol:
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4. The first step for this problem is quite similar to what we did in Problem



3, namely,
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since Gauss’ law for electric fields gives p = eV - E. Now, if we invoke
Problem 1(a) above, we see that
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If we use this, we see that
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Now to compute the right-hand side of the equation we want to verify:
for a linear medium, the Maxwell stress tensor will be
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Therefore,
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as we’d hoped.



