
MP465 – Advanced Electromagnetism

Solutions to Problem Set 3

1. The point of this problem is just to get you used to the types of manip-
ulations you need to do when using the Levi-Civita symbol, because it
appears surprisingly frequently throughout maths and phsyics...

(a) The curl of a vector field ~b is, component-wise,(
~∇×~b

)
m

=
∑
k`

εmk`(~∇)kb`

=
∑
mn

εmk`
∂b`
∂xk

where all sums will be from 1 to 3 (or over x, y and z – same
thing). Thus,[

~a×
(
~∇×~b

)]
i

=
∑
jm

εijmaj

(
~∇×~b

)
m

=
∑
jm

εijmaj

(∑
k`

εmk`
∂b`
∂xk

)

=
∑
jk`m

εijmεmk`aj
∂b`
∂xk

Now, because the Levi-Civita symbol is totally antisymmetric,
εmk` = −εkm` = εk`m and so the above sum may be rewritten as

[
~a×

(
~∇×~b

)]
i

=
∑
jk`

(∑
m

εijmεk`m

)
aj
∂b`
∂xk

=
∑
jk`

(δikδj` − δi`δjk) aj
∂b`
∂xk

.
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Now, if we do the sums over j, k and ` successively, we get[
~a×

(
~∇×~b

)]
i

=
∑
k`

(
δika`

∂b`
∂xk
− δi`ak

∂b`
∂xk

)
=

∑
`

(
a`
∂b`
∂xi
− δi`~a · ~∇b`

)

= ~a · ∂
~b

∂xi
− ~a · ~∇bi.

If we swap the two vectors, we obviously get[
~b×

(
~∇× ~a

)]
i

= ~b · ∂~a
∂xi
−~b · ~∇ai

so adding the two gives[
~a×

(
~∇×~b

)
+~b×

(
~∇× ~a

)]
i

= ~a · ∂
~b

∂xi
− ~a · ~∇bi +~b · ∂~a

∂xi
−~b · ~∇ai.

The second and last terms together are the ith-component of −(~a ·
~∇)~b− (~b · ~∇)~a, and the product rule tells us that [~∇(~a ·~b)]i is the
first plus the third terms, and so we’ve proved what we wanted:

~a×
(
~∇×~b

)
+~b×

(
~∇× ~a

)
= ~∇

(
~a ·~b

)
−
(
~a · ~∇

)
~b−

(
~b · ~∇

)
~a.

(b) For this problem, we need to be cogniscent of the fact that the
derivative in the curl acts on a product of the components of ~a and
~b and to use the appropriate theorem of calculus. More specifically,
since (

~a×~b
)
m

=
∑
k`

εmk`akb`,
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then [
~∇×

(
~a×~b

)]
i

=
∑
jm

εijm(~∇)j(~a×~b)m

=
∑
jm

εijm
∂

∂xj

(∑
k`

εmk`akb`

)

=
∑
jk`m

εijmεmk`

[
∂

∂xj
(akb`)

]
=

∑
jk`m

εijmεmk`

(
∂ak
∂xj

b` + ak
∂b`
∂xj

)
.

Again using εmk` = εk`m and summing over m gives[
~∇×

(
~a×~b

)]
i

=
∑
jk`

(δikδj` − δi`δjk)

(
∂ak
∂xj

b` + ak
∂b`
∂xj

)
.

As we did in (a), we now do the sums over j, k and `, in that
order:[
~∇×

(
~a×~b

)]
i

=
∑
k`

[
δik

(
∂ak
∂x`

b` + ak
∂b`
∂x`

)
− δi`

(
∂ak
∂xk

b` + ak
∂b`
∂xk

)]
=

∑
`

[
∂ai
∂x`

b` + ai
∂b`
∂x`
− δi`

(
(~∇ · ~a)b` + (~a · ~∇)b`

)]
= (~b · ~∇)ai + ai(~∇ ·~b)− (~∇ · ~a)bi − (~a · ~∇)bi

which we recognise as the ith component of

~∇×
(
~a×~b

)
= ~a

(
~∇ ·~b

)
+
(
~b · ~∇

)
~a−~b

(
~∇ · ~a

)
−
(
~a · ~∇

)
~b

and that’s exactly what we wanted to prove.

2. For this problem, we need to determine the polarisability and magneti-
sation induced by the given fields in the materials presented. Recall
that the definitions of the electric and magnetic susceptibilities are

~P = ε0χe
~E, ~M = χm

~H.
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The first of these will give the polarisability directly from the electric
field, but we have to manipulate the second a bit: recall that ~H = ~B/µ,
where µ = (1 + χm)µ0 is the material’s permeability. This means that

we get the magnetisation from the magnetic field via ~M = χm
~B/µ.

But this isn’t all: we want the electric and magnetic dipole of each
constituent atom/molecule in our material, which means we need a
number density ρN for each material, i.e. the number of particles per
unit volume. Now, if the total volume is V , then it has a total mass
ρMV , where ρM is the mass density of the material. If the mass of each
constituent is A (we’re using m, M and µ for other quantities, so best
to use a nonstandard variable for mass here), then N = ρMV/A, so
ρN = N/V = ρM/A is the number density. Thus, if ~p and ~m are the

constituent dipoles, then ~P = ρN~p and ~M = ρN ~m. Thus,

~p =
ε0χeA

ρM
~E, ~m =

χmA

µρM
~B.

So now we’re in a position to put in some numbers. Me, whenever
I’m confronted with the need for physical quantities, I go straight to
www.engineeringtoolbox.com, and I get these:

material mass density relative permittivity relative permeability
water 1000 80 0.999992
wood 500-800 2-6 1.00000043

air 1.204 1.000536 1.00000037

(All densities are in kilogrammes per cubic metre, and for air and water,
I’ve taken the values at 20◦C.) Note that it’s the relative permittivity
ε/ε0 and relative permeability µ/µ0 listed above, and we can see that
µ ≈ µ0 holds for all three materials (as we mentioned before). However,
µ = (1+χm)µ0 gives χm = µ/µ0−1, so we can’t use that approximation
to get that, because they’d all be zero. But they’re easily computed
from the exact values above: for water, wood and air, we get magnetic
susceptibilities of−8.0×10−6, 4.3×10−7 and 3.7×10−7 respectively. (So
water is diamagnetic and wood and air are paramagnetic.) Similarly,
χe = ε/ε0 − 1 and so we get electric susceptibilities of 79, 1-5 and
5.36× 10−4.
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Now we need constituent masses. Water is easy: it’s very close to 18
times the proton mass 1.67 × 10−27 kg, so we’ll use that. Similarly, if
we take air to be 20% O2 and 80% N2, we get 28.8 times the proton
mass. Thus, we have everything we need for (a) and (c), and putting
in the numbers gives the electric dipoles to be 3.15 × 10−34 A · m · s
for water and 2.84 × 10−36 A ·m · s for air, both in the same direction
as the electric field. The magnetic dipoles are 9.57 × 10−31 A · m2 for
water and 5.88 × 10−29 A ·m2 for air, with the former in the opposite
direction to ~B and the latter in the same direction.

Now, wood is the tricky one, because obviously not all wood is the
same, which is why there’s a range of values above. So let’s take the
midpoints, i.e. a mass density of 650 kg ·m−3 and an electric suscepti-
bility of 3. Also, what we take as a constituent mass is not obvious, so
we’ll make a very crude approximation that it’s made entirely of cellu-
lose, which Wikipedia tells me has a molar mass of 162.1406 grammes
per mole, so we’ll take 162 proton masses as its constituent mass. With
these assumptions, we get an electric dipole of 1.66×10−36 A ·m · s and
7.12× 10−31 A ·m2 for the magnetic dipole, both in the same direction
as the fields inducing them.

3. We’ll do this and the next problem by computing both sides of the
equations given and showing that they’re equal rather than deriving
them from scratch.

First off, for a linear medium, the energy density and Poynting vector
are

u =
ε

2
~E · ~E +

1

2µ
~B · ~B, ~S =

1

µ
~E × ~B.

So the time derivative of the energy density is

∂u

∂t
= ε ~E · ∂

~E

∂t
+

1

µ
~B · ∂

~B

∂t

and since Maxwell’s equations tell us that

µε
∂ ~E

∂t
= ~∇× ~B − µ~J,

∂ ~B

∂t
= −~∇× ~E,
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we get

∂u

∂t
= ~E ·

(
1

µ
~∇× ~B − ~J

)
− 1

µ
~B · ~∇× ~E

so

∂u

∂t
+ ~J · ~E = − 1

µ

(
~B · ~∇× ~E − ~E · ~∇× ~B

)
.

Now let’s compute the divergence of the Poynting vector using the
Levi-Civita symbol:

~∇ · ~S =
1

µ
~∇ · ( ~E × ~B)

=
1

µ

∑
i

∂

∂xi
( ~E × ~B)i

=
1

µ

∑
ijk

∂

∂xi
(εijkEjBk)

=
1

µ

∑
ijk

εijk

(
∂Ej

∂xi
Bk + Ej

∂Bk

∂xi

)

=
1

µ

(∑
kij

Bkεkij
∂Ej

∂xi
−
∑
jik

Ejεjik
∂Bk

∂xi

)

since εijk = εkij = −εjik. In the first term, doing the sums over i and j

first gives
∑

k Bk(~∇× ~E)k = ~B · ~∇× ~E, and in the second, doing the

(ik) sums gives
∑

j Ej(~∇× ~B)j = ~E · ~∇× ~B, so

~∇ · ~S =
1

µ

(
~B · ~∇× ~E − ~E · ~∇ ~B

)
and therefore, as desired,

∂u

∂t
+ ~J · ~E = −~∇ · ~S.

4. The first step for this problem is quite similar to what we did in Problem
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3, namely,

∂

∂t
(µεSi) = ε

∑
jk

εijk
∂

∂t
(EjBk)

= ε
∑
jk

εijk

(∂ ~E
∂t

)
j

Bk + Ej

(
∂ ~B

∂t

)
k


=

∑
jk

εijk

(
1

µ
~∇× ~B − ~J

)
j

Bk − ε
∑
jk

εijkEj

(
~∇× ~E

)
k

=

[
1

µ
(~∇× ~B)× ~B − ~J × ~B − ε ~E × (~∇× ~E)

]
i

.

Thus, using the definition of ~f ,

∂

∂t
(µεSi) + fi =

[
1

µ
(~∇× ~B)× ~B − ε ~E × (~∇× ~E) + ρ ~E

]
i

=

[
− 1

µ
~B × (~∇× ~B)− ε ~E × (~∇× ~E) + ε ~E(~∇ · ~E)

]
i

since Gauss’ law for electric fields gives ρ = ε~∇ · ~E. Now, if we invoke
Problem 1(a) above, we see that[

~a×
(
~∇× ~a

)]
i

= ~a · ∂~a
∂xi
− ~a · ~∇ai

=
1

2

∂

∂xi
(~a · ~a)− ~a · ~∇ai.

If we use this, we see that

∂

∂t
(µεSi) + fi = − ∂

∂xi

(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
+

1

µ
( ~B · ~∇)Bi

+ε( ~E · ~∇)Ei + ε(~∇ · ~E)Ei.

Now to compute the right-hand side of the equation we want to verify:
for a linear medium, the Maxwell stress tensor will be

Tij =

(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
δij − εEiEj −

1

µ
BiBj.
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Therefore,∑
j

∂Tij
∂xj

=
∑
j

∂

∂xj

[(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
δij − εEiEj −

1

µ
BiBj

]
=

∑
j

[
δij

∂

∂xj

(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
−
(
ε
∂Ei

∂xj
Ej + εEi

∂Ej

∂xj
+

1

µ

∂Bi

∂xj
Bj +

1

µ
Bi
∂Bj

∂xj

)]
.

If we now do the sum, we get∑
j

∂Tij
∂xj

=
∂

∂xi

(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
−
(
ε( ~E · ~∇)Ei + εEi(~∇ · ~E) +

1

µ
( ~B · ~∇)Bi +

1

µ
Bi(~∇ · ~B)

)
.

But ~∇ · ~B = 0, so this is∑
j

∂Tij
∂xj

=
∂

∂xi

(
ε

2
~E · ~E +

1

2µ
~B · ~B

)
− 1

µ
( ~B · ~∇)Bi

−ε( ~E · ~∇)Ei − ε(~∇ · ~E)Ei

and this proves that

∂

∂t
(µεSi) + fi = −

∑
j

∂Tij
∂xj

as we’d hoped.
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