
MP465 – Advanced Electromagnetism

Solutions to Problem Set 1

1. (a) We see the potential given diverges at r = 0, so we expect some
funny business there, but for r > 0, it’s finite so we can do any
calculations without worry.

In particular, if we want ∇2Φ, we can just use the spherical-
coordinate form given; furthermore, since Φ depends only on the
radial coordinate r and not the angular coordinates θ and φ, we
just have

∇2Φ =
1

r2
d

dr

(
r2

dΦ

dr

)
This is bog-standard differentiation, and the result is qe−2r/a/πa3ε0.
Thus, for r > 0, we have

ρ = −ε0∇2Φ

= − q

πa3
exp

(
−2r

a

)
.

Since δ(3)(~r) = 0 for r > 0, this means that this is the function
B(r) that we’re after.

(b) Let B be the region r < R (called a “ball of radius R” in maths-
speak). The surface of this is the sphere of radius R centred at
the origin, S2. Thus, we see that∫

B
ρ d3~r = −ε0

∫
B
∇2Φ d3~r

= −ε0
∫
B

~∇ ·
(
~∇Φ
)

d3~r

= −ε0
∫
S2

~∇Φ · d~σ

= −ε0
∫
S2

dΦ

dr
dσ
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since both ~∇Φ and d~σ both point radially outward. Now, since
this is evaluated on the spherical boundary, r = R throughout
and so∫
B
ρ d3~r = −ε0

∫
S2

[
− q

4πε0

(
1

R2
+

2

aR
+

2

a2

)
exp

(
−2R

a

)] (
R2 sin θ dθ dφ

)
= q

(
1 +

2R

a
+

2R2

a2

)
exp

(
−2R

a

)
.

This is the total charge contained in the region r < R, and notice
that in the R→ 0 limit, we get q, i.e. a nonzero charge.

We found B(r) in (a), and so we know

ρ = Aδ(3)(~r)− q

πa3
exp

(
−2r

a

)
and since the origin is contained in B, we have∫

B
ρ d3~r = A− q

πa3

∫
B

exp

(
−2r

a

)
r2 sin θ dr dθ dφ.

But because the remaining integrand is continuous in r, it vanishes
when integrated from r = 0 to r = R→ 0. Therefore, A = q and
the charge density is

ρ = qδ(3)(~r)− q

πa3
exp

(
−2r

a

)
(c) Now let q = e. The fact that there is a nonzero charge in any

region, no matter how tiny, containing the origin, indicates that
the eδ(3)(~r) term describes a point charge of magnitude +e there.
But notice that if a = a0, the second term may be written as
−e|ψ100(~r)|2. The Born interpretation says that the modulus-
squared of a QM wavefunction is the probability density, i.e. when
integrated over a region, it gives the chance of finding the parti-
cle there. But since an electron has charge −e, then −e|ψ100(~r)|2
gives the charge density due to the electron being “smeared out”
into a probability cloud.

Thus, this ρ that we’ve found is the sum of the charge density of
the hydrogen nucleus (a proton) plus the effective charge density of
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the quantum-mechanical electron, and so the potential we started
with is the correct one to describe a ground-state hydrogen atom.
Neat!

2. We want to look at the distribution given by the density ρ(r, φ, z) =
σδ(z) for r ≤ a, and zero otherwise, and compute the electric field
along the z-axis using

~E(~r) =
1

4πε0

∫
ρ (~r ′) (~r − ~r ′)
|~r − ~r ′|3

d3~r ′.

So if we’re looking on the z-axis, ~r = zêz, and since the position vector
of each bit of charge is ~r ′ = r′êr′ + z′êz, we have

~r − ~r ′ = (z − z′) êz − r′êr′ ,
|~r − ~r ′| =

√
(~r − ~r ′) · (~r − ~r ′)

=
√

(r′)2 + (z − z′)2

and so the electric field on the z-axis is

~E(0, φ, z) =
1

4πε0

∫
σδ(z′) [(z − z′) êz − r′êr′ ]

[(r′)2 + (z − z′)2]3/2
r′dr′dφ′dz′

=
σ

4πε0

∫
r′(zêz − r′êr′)
[(r′)2 + z2]3/2

dr′dφ′

where we’ve done the z′-integral in the second step. Now, the only
explicit φ′-dependence is in êr′ = cosφ′êx + sinφ′êy, but since both the
sine and cosine integrate to zero, only the z-component survives, giving

~E(0, φ, z) =
σzêz
4πε0

∫
r′

[(r′)2 + z2]3/2
dr′dφ′

=
σzêz
4πε0

[
− 1√

(r′)2 + z2

∣∣∣∣∣
a

0

[φ′|2π0

=
σzêz
2ε0

(
1√
z2
− 1√

z2 + a2

)
.

Since
√
z2 = |z| and z/|z| = sgn(z), we recover the same result we got

by computing Φ and then using ~E = −~∇Φ, namely

~E(0, φ, z) =
σ

2ε0

(
sgn(z)− z√

z2 + a2

)
êz.
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3. (a) First, the obvious: since the rod is only on the z-axis, the density
must be zero if r 6= 0, which suggests that there’ll be a δ(r)
in the density. Since it’s length L centred on the origin, then
obviously ρ = 0 if z > L/2 or z < −L/2, so for |z| < L/2 it must
have a form like A(r, φ, z)δ(r). However, since it’s cylindrically
symmetric, there can be no φ-dependence, and since the charge is
uniformly-distributed, A can’t depend on z either, so ρ = A(r)δ(r)
for some A(r).

Now, let’s integrate this density over the cylindrical region r < R,
−L/2 < z < L/2. This contains the entire rod, so the result must
be q, and thus

q =

∫
A(r)δ(r) r dr dφ dz

=
[
lim
r→0

rA(r)
]

(2π)(L)

since the delta-function evaluates the integrand at r = 0. For this
to be finite, rA(r) must approach q/2πL as r goes to zero, and
so A(r) = q/2πLr does the trick. Thus, the correct form for the
density is

ρ(r, φ, z) =
λδ(r)

2πr

for −L/2 < z < L/2 and zero otherwise, where λ = q/L

(b) The potential is therefore

Φ(~r) =
1

4πε0

∫
ρ (~r ′)

|~r − ~r ′|
d3~r ′

=
λ

8π2ε0

∫
δ(r′)/r′√

r2 − 2rr′ cos(φ′ − φ) + (r′)2 + (z − z′)2
r′dr′dφ′dz′

=
λ

8π2ε0

∫
1√

r2 + (z′ − z)2
dφ′dz′

=
λ

4πε0

∫ L/2

−L/2

dz′√
r2 + (z′ − z)2

where the last two lines were obtained by first doing the r′-integral
and then the φ′ one.
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This integral is of the form
∫

(s2+1)−1/2ds, and is common enough
that you can look it up if need be, but here’s how to do it: make
the substitution s = tanhu, so that∫

ds√
s2 + 1

=

∫
sech 2u√

tanh2 u+ 1
du

=

∫
sechu du

=

∫
tanhu sechu+ sech 2u

sechu+ tanhu
du

=

∫
d(sechu+ tanhu)

sechu+ tanhu

= ln(sechu+ tanhu)

= ln(
√
s2 + 1 + s).

Thus, if we define s = (z′ − z)/r in the integral for Φ, we obtain

Φ(r, φ, z) =
λ

4πε0

∫ (L/2−z)/r

−(L/2+z)/r

rds√
r2 + r2s2

=
λ

4πε0

[
ln(
√
s2 + 1 + s)

∣∣∣(L/2−z)/r
−(L/2+z)/r

=
λ

4πε0
ln

(√
(L/2− z)2 + r2 + L/2− z√
(L/2 + z)2 + r2 − L/2− z

)
as the scalar potential.

This is good everywhere; we didn’t have to assume that we’re only
on the z-axis or the like. So the contrast between this problem
and the previous one is that in some cases we can get an ex-
plicit expression for the general potential (and thus electric field),
whereas in others we can only get such an expression under cer-
tain assumptions. (Note, however, if we’re willing to deal with
special functions like elliptic integrals, then we can sometimes get
full expressions even in the latter cases.)

4. (a) We know that the scalar potential due toN point charges q1, . . . , qN
located at ~r1, . . . , ~rN is simply

Φ(~r) =
1

4πε0

N∑
i=1

qi
|~r − ~ri|
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so the potential for the single real charge and three image charges
in the order given in the problem is

Φ(x, y, z) =
1

4πε0

(
q√

(x− a)2 + (y − b)2 + z2
− q√

(x− a)2 + (y + b)2 + z2

− q√
(x+ a)2 + (y − b)2 + z2

+
q√

(x+ a)2 + (y + b)2 + z2

)
.

If we evaluate this in the plane x = 0, we see the first and third
terms above cancel each other out, as do the second and fourth
terms. Similarly, if y = 0, the first and second cancel out and the
third and fourth do as well. Thus, the above potential vanishes
if either x = 0 or y = 0. Since the surface of the conductor
lies entirely in these two planes, then Φ = 0 on the conductor’s
surface, as desired. Thus, this gives the scalar potential outside
the conductor.

(b) Since ~E = −~∇Φ, this is just a matter of calculus and should be
pretty standard (if tedious) work for all of you, so I’ll just state
the result component by component (since it’s easier that way):

Ex(x, y, z) =
q

4πε0

{
x− a

[(x− a)2 + (y − b)2 + z2]3/2
− x− a

[(x− a)2 + (y + b)2 + z2]3/2

− x+ a

[(x+ a)2 + (y − b)2 + z2]3/2
+

x+ a

[(x+ a)2 + (y + b)2 + z2]3/2

}
Ey(x, y, z) =

q

4πε0

{
y − b

[(x− a)2 + (y − b)2 + z2]3/2
− y + b

[(x− a)2 + (y + b)2 + z2]3/2

− y − b
[(x+ a)2 + (y − b)2 + z2]3/2

+
y + b

[(x+ a)2 + (y + b)2 + z2]3/2

}
Ez(x, y, z) =

q

4πε0

{
z

[(x− a)2 + (y − b)2 + z2]3/2
− z

[(x− a)2 + (y + b)2 + z2]3/2

− z

[(x+ a)2 + (y − b)2 + z2]3/2
+

z

[(x+ a)2 + (y + b)2 + z2]3/2

}
.

(And with the above, you can easily see that Ey = Ez = 0 on
x = 0 and Ex = Ez = 0 on y = 0; therefore, on the conductor’s
surface, the electric field is normal to it, as it must be.)
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(c) The surface charge density on a conductor is given by the formula

σ = ε0n̂· ~E, where n̂ is a unit normal pointing out of the conductor
at the point on the surface we’re considering. For the case at hand,
the surface is piecewise defined (one part is x = 0, y > 0 and the
other is x > 0, y = 0), so the surface charge density will also be
piecewise.

First, on the surface x = 0, y > 0 (which we’ll call surface 1):
everywhere on this part of the surface, the unit normal is êx, so
σ = ε0Ex. All points on this surface have coordinates (0, y, z) with
y > 0, so if we use our results from (b), we see

σ1(y, z) = ε0Ex(0, y, z)

=
q

4π

{
−a

[a2 + (y − b)2 + z2]3/2
− −a

[a2 + (y + b)2 + z2]3/2

− a

[a2 + (y − b)2 + z2]3/2
+

a

[a2 + (y + b)2 + z2]3/2

}
=

qa

2π

{
1

[a2 + (y + b)2 + z2]3/2
− 1

[a2 + (y − b)2 + z2]3/2

}
.

On the surface x > 0, y = 0 (surface 2): êy is the unit normal
everwhere, so σ = ε0Ex. All points have coordinates (x, 0, z) with
y > 0, so if we denote the

σ2(x, z) = ε0Ey(x, 0, z)

=
q

4π

{
−b

[(x− a)2 + b2 + z2]3/2
− b

[(x− a)2 + b2 + z2]3/2

− −b
[(x+ a)2 + b2 + z2]3/2

+
b

[(x+ a)2 + b2 + z2]3/2

}
=

qb

2π

{
1

[(x+ a)2 + b2 + z2]3/2
− 1

[(x− a)2 + b2 + z2]3/2

}
so we see that the full expression is

σ(x, y, z) =

{
σ1(y, z) for x = 0, y > 0
σ2(x, z) for x > 0, y = 0

Now to compute the induced charge on the surface: the total
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charge on surface 1 is

q1 =

∫
surface 1

σ1(y, z) dy dz

=
qa

2π

∫ ∞
0

(∫ ∞
−∞

{
1

[a2 + (y + b)2 + z2]3/2
− 1

[a2 + (y − b)2 + z2]3/2

}
dz

)
dy

where we’ve written in a way to show that we’ll do the z-integration
first. Using ∫

ds

(s2 + 1)3/2
=

s√
s2 + 1

(which you should be able to verify; it’s easier to show that the
similar one I did above), we see that∫ ∞
−∞

1

[a2 + (y + b)2 + z2]3/2
dz = 2

∫ ∞
0

1

[a2 + (y + b)2 + z2]3/2
dz

= 2

[
1

(y + b)2 + a2
z√

z2 + (y + b)2 + a2

∣∣∣∣∣
∞

0

=
2

(y + b)2 + a2
.

Now for the y-integral, which just gives us an arctangent:∫ ∞
0

2

(y + b)2 + a2
dy = 2

[
1

a
arctan

(
y + b

a

)∣∣∣∣∞
0

=
2

a

[
π

2
− arctan

(
b

a

)]
.

The other part of the integral over surface 1 is exactly the same
except with a −b instead of a b, so doing both the z- and y-
integrals just gives the above with arctan(−b/a) = − arctan(b/a).
The overall charge q1 that we’re after is the difference between
these two integrals and thus

q1 =
qa

2π

{
2

a

[
π

2
− arctan

(
b

a

)]
− 2

a

[
π

2
+ arctan

(
b

a

)]}
= −2q

π
arctan

(
b

a

)
.
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(A fair bit of work for a pretty simple answer, eh? Welcome to
Theoretical Physics!)

On surface 2, we need to use the other part of σ, giving a total
charge

q2 =

∫
surface 2

σ2(x, z) dx dz

=
qb

2π

∫ ∞
0

(∫ ∞
−∞

{
1

[(x+ a)2 + b2 + z2]3/2
− 1

[(x− a)2 + b2 + z2]3/2

}
dz

)
dx

But notice that this is exactly the same integral we just did for
surface 1, except with a and b swapped! Sure, we’re calling one
of the integration variables x rather than y, but the integrand
has the same functional dependence on x as it did on y and this
variable is integrated over the same range, 0 to ∞. Because of
this, we barely have to do any work other than switch a and b to
get

q2 = −2q

π
arctan

(a
b

)
.

Thus, the total induced charge on the conductor’s surface is

q̃ = q1 + q2

= −2q

π

[
arctan

(
b

a

)
+ arctan

(a
b

)]
which, if we use the arctangent identity given in the problem, gives
q̃ = −q. Which is precisely the sum of the three image charges
−q, −q and q. QED, as they say.
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