
MP465 – Advanced Electromagnetism

Tutorial 11 (7 May 2020)

The Electromagnetic Energy-Momentum Tensor
In Problem Set 3, we talked about the correct equations which encapsulate

energy and momentum conservation, and we found that, in vacuum (i.e.
ε = ε0 and µ = µ0), they take the form

∂u

∂t
+ ~J · ~E = −~∇ · ~S,

∂

∂t
(µ0ε0Si) + fi = −

3∑
j=1

∂Tij
∂xj

where

~S =
1

µ0

~E × ~B,

u =
ε0
2
| ~E|2 +

1

2µ0

| ~B|2,

Tij =
1

2

(
ε0| ~E|2 +

1

µ0

| ~B|2
)
δij − ε0EiEj −

1

µ0

BiBj,

~f = ρ ~E + ~J × ~B.

Given all of our discussion about the relativistic formulation of EM, we’d
now like to see of all of these quantities and equations may be recast in a
Lorentz-covariant form. We expect this to be doable, because all of the above
come from Maxwell’s equations and we were successful in twisting those into
shape. Plus, there’s one scalar and one 3-vector equation, which, as we’ve
seen, suggests that a 4-vector equation is hidden in them.

We’ll follow the same basic method as we did in lecture, namely, rewrite
all the fields and sources in terms of the appropriate components of the field
strength tensor F µν and the 4-current Jµ. We start with the Poynting vector,
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or at least the x-component:

Sx =
1

µ0

[EyBz − EzBy]

=
1

µ0

[
(cF 02)(F 12)− (cF 03)(−F 13)

]
=

c

µ0

[
F 02F 12 + F 03F 13

]
=

c

µ0

[
F 02F 1

2 + F 03F 1
3

]
=

c

µ0

[
F 00F 1

0 + F 01F 1
1 + F 02F 1

2 + F 03F 1
3

]
where in the last step we’ve simply added zero twice, since both F 00 and F 1

1

are zero. In doing so, we see that the second index of each field strength is
summed over and thus we can write Sx = cF 0ρF 1

ρ/µ0. Sy is very similar:

Sy =
1

µ0

[EzBx − ExBz]

=
1

µ0

[
(cF 03)(F 23)− (cF 01)(−F 21)

]
=

c

µ0

[
F 01F 21 + F 03F 23

]
=

c

µ0

[
F 01F 2

1 + F 03F 2
3

]
=

c

µ0

[
F 00F 2

0 + F 01F 2
1 + F 02F 2

2 + F 03F 2
3

]
=

c

µ0

F 0ρF 2
ρ.

And, predictably enough, looking at the z-component leads to Sz = cF 0ρF 3
ρ/µ0,

meaning that the ith component is Si = cF 0ρF i
ρ/µ0. This suggests a possi-

bility: if we define the quantity Mµν = F µρF ν
ρ/µ0 – which transforms like

any tensor with two upper indices – we see that M0i = Si/c for i = 1, 2, 3,
i.e. the components of the Poynting vector are accounted for inside this new
object.

One other thing we can see is that this object is symmetric under inter-
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change of its indices:

Mνµ =
1

µ0

F νρF µ
ρ

=
1

µ0

F µ
ρF

νρ

=
1

µ0

F µρF ν
ρ

= Mµν

and thus M i0 = Si/c as well.
But what are some of the other components of this object? Let’s look at

the 00 component; by definition,

M00 =
1

µ0

F 0ρF 0
ρ

=
1

µ0

[
F 00F 0

0 + F 01F 0
1 + F 02F 0

2 + F 03F 0
3

]
=

1

µ0

[(
Ex
c

)(
Ex
c

)
+

(
Ey
c

)(
Ey
c

)
+

(
Ez
c

)(
Ez
c

)]
= ε0| ~E|2

which is at least part of some of the quantities we’re looking at, u and Tij,
so maybe we’re onto something here. Let’s see what the 12 component gives
us:

M12 =
1

µ0

F 1ρF 2
ρ

=
1

µ0

[
F 10F 2

0 + F 11F 2
1 + F 12F 2

2 + F 13F 2
3

]
=

1

µ0

[(
−Ex
c

)(
Ey
c

)
+ (−By)(Bx)

]
= −ε0ExEy −

1

µ0

BxBy

which also happens to be Txy! It’s easy to show that M13 = Txz and M23 =
Tyz as well. So we’ve got the Poynting vector and the off-diagonal components
of the Maxwell stress tensor, but we don’t quite have u, Txx, Tyy and Tzz yet.
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However, we did find M00 = ε0| ~E|2, and notice that we can rewrite this
as

M00 = ε0| ~E|2

=
ε0
2
| ~E|2 +

1

2µ0

| ~B|2 +
ε0
2
| ~E|2 − 1

2µ0

| ~B|2

= u+

(
ε0
2
| ~E|2 − 1

2µ0

| ~B|2
)
.

True, but so what? If we look at M11 now, we can see why we write it this
way:

M11 =
1

µ0

F 1ρF 1
ρ

=
1

µ0

[
F 10F 1

0 + F 11F 1
1 + F 12F 1

2 + F 13F 1
3

]
=

1

µ0

[(
−Ex
c

)(
Ex
c

)
+ (Bz)(Bz) + (−By)(−By)

]
= −ε0E2

x +
1

µ0

(B2
y +B2

z )

=
1

µ0

| ~B|2 − ε0E2
x −

1

µ0

B2
x.

Note that the xx component of the stress tensor is

Txx =
1

2

(
ε0| ~E|2 +

1

2µ0

| ~B|2
)
δxx − ε0E2

x −
1

µ0

B2
x,

=
ε0
2
| ~E|2 +

1

2µ0

| ~B|2 − ε0E2
x −

1

µ0

B2
x

=
ε0
2
| ~E|2 +

1

2µ0

| ~B|2 +

(
Txx −

1

µ0

| ~B|2
)

= M11 +
ε0
2
| ~E|2 − 1

2µ0

| ~B|2

so

M11 = Txx −
(
ε0
2
| ~E|2 − 1

2µ0

| ~B|2
)
.
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The quantity in the brackets also showed up when we wrote M00 in terms of
u, and it also shows up when we compute the remaining two components of
Mµν :

M22 = Tyy −
(
ε0
2
| ~E|2 − 1

2µ0

| ~B|2
)
,

M33 = Tzz −
(
ε0
2
| ~E|2 − 1

2µ0

| ~B|2
)
.

Therefore, if we write Mµν as a 4× 4 matrix as we’ve done before, we get

Mµν =


u+K Sx/c Sy/c Sz/c
Sx/c Txx −K Txy Txz
Sy/c Tyx Tyy −K Tyz
Sz/c Tzx Tzy Tzz −K


where we’ve defined

K =
ε0
2
| ~E|2 − 1

2µ0

| ~B|2

for convenience. Notice that K only appears in the diagonal elements, so we
can rewrite this as

Mµν =


u Sx/c Sy/c Sz/c

Sx/c Txx Txy Txz
Sy/c Tyx Tyy Tyz
Sz/c Tzx Tzy Tzz

−K

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= T µν −Kηµν

where we define the electromagnetic energy-momentum tensor as

T µν =


u Sx/c Sy/c Sz/c

Sx/c Txx Txy Txz
Sy/c Tyx Tyy Tyz
Sz/c Tzx Tzy Tzz

 .

I’ve been a bit hasty here; there’s no question Mµν deserves two Lorentz
indices, because it’s constructed explictly from the field strength, and the
metric tensor ηµν is one of the fundamental building blocks of special relativ-
ity. But that doesn’t mean the object we’ve just defined, T µν , transforms as
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T µν 7→ T ′µν = Λµ
αΛν

βT
αβ, as an object with two-upper indices (a “4-tensor”)

should.
The potential spanner in the works is K; we see that since T µν = Mµν +

Kηµν , if K changes under a Lorentz transformation, then T µν will not trans-
form as a 4-tensor. If, however, K is a Lorentz-invariant quantity, then this
energy-momentum thingie will indeed be a 4-tensor. Luckily, it is, as we can
eventually see if we write K in terms of the field strength tensor:

K =
ε0
2

(
E2
x + E2

y + E2
z

)
− 1

2µ0

(
B2
x +B2

y +B2
z

)
=

1

2µ0c2
[
(cF 01)2 + (cF 02)2 + (cF 03)2

]
− 1

2µ0

[
(F 23)2 + (F 31)2 + (F 12)2

]
=

1

2µ0

[
(F 01)(−F01) + (F 02)(−F02) + (F 03)(−F03) + (F 12)(F12) + (F 23)(F23) + (F 31)(F31)

]
= − 1

2µ0

[
F 01F01 + F 02F02 + F 03F03 + F 12F12 + F 23F23 + F 31F31

]
.

Because any terms like F 00F00 are zero, you might be tempted to identify
this with −F λρFλρ/2µ0, but you’d be off by a factor of two. That’s because
that sum contains, for example, both F 12F12 and F 21F21 (we must sum over
all pairs of indices). However, because F 21 = −F 12, these two terms are the
same, so adding them gives 2F 12F12. Because of this, we find

K = − 1

4µ0

F λρFλρ.

Since both pairs of indices are contracted, this is indeed a Lorentz-invariant
quantity, and therefore the electromagnetic energy-momentum tensor

T µν =


u Sx/c Sy/c Sz/c

Sx/c Txx Txy Txz
Sy/c Tyx Tyy Tyz
Sz/c Tzx Tzy Tzz


=

1

µ0

(
F µρF ν

ρ −
1

4
ηµνF λρFλρ

)
is indeed a tensor in the sense it Lorentz-transforms as we expect a 2-upper-
index object must. Furthermore, it contains all the information about the
energy, momentum and stress of the EM field.
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Now, to the energy- and momentum-conservation equations. Using what
we’ve just found, we can rewrite

∂u

∂t
+ ~J · ~E = −~∇ · ~S

as

(c∂0)(T
00) + (J1)(−cF 10) + (J2)(−cF 20) + (J3)(−cF 30) = −(∂1)(cT

10)− (∂2)(cT
20)− (∂3)(cT

30)

or, after dividing through by c and rearranging,

∂0T
00 + ∂1T

10 + ∂2T
20 + ∂3T

30 = ∂µT
µ0

= J1F
10 + J2F

20 + J3F
30

= JµF
µ0

(where again we’ve used the fact that F 00 = 0). Now look at the x-component
of the energy conservation equation, namely,

∂

∂t
(µ0ε0Sx) + fx =

∂

∂t
(µ0ε0Sx) + ρEx + JyBz − JzBy

= −
∑
j

∂Txj
∂xj

= −∂Txx
∂x
− ∂Txy

∂y
− ∂Txz

∂z
.

This becomes

(c∂0)

(
T 01

c

)
+

(
−J0
c

)
(cT 01) + (J2)(−F 21)− (J3)(F

31) = −(∂1)(T
11)− (∂2)(T

21)− (∂3)(T
31)

or

∂0T
01 + ∂1T

11 + ∂2T
21 + ∂3T

31 = ∂µT
µ1

= J0T
01 + J2F

21 + J3F
31

= JµF
µ1

and at this point, you can probably guess what the y- and z-components
are, with the upshot being that the four energy/momentum-conservation
equations become

∂µT
µν = JµT

µν .
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Now, the importance of the energy-momentum tensor is that it contains
all information about the energy and momentum of the EM field, and thus
we can succunctly give the conservation law as we’ve just done. However,
it’s arguably the most important quantity to have in general relativity (GR).
It’s energy (usually in the form of mass) that causes spacetime to curve, and
so we need to have a relativistic quantity that tells us what energy is around,
and that’s exactly what T µν is. In fact, the most fundamental equation in
GR is Einstein’s equation

Rµν − 1

2
Rgµν + Λgµν =

8πG

c4
T µν

and lo and behold, there’s the energy-momentum tensor appearing explicitly
as a source term. (I won’t explain fully what all the terms are, just that
everything on the left-hand side depends on the spacetime metric g and its
derivatives, so the above is a set of nonlinear partial differential equations
which, when solved, tell us how spacetime is curved.)

But all systems with any sort of matter or energy – not just as electro-
magnetic fields – have an associated energy-momentum tensor, and it’s that
which goes into the above equation. For example, putting the appropriate
tensor for a point mass into the above yields the Schwarzschild metric which
describes an electrically-neutral nonrotaing black hole. A charged black hole
would use the tensor we’ve just derived, with the field strength tensor needed
to construct T µν being the one for a stationary point charge. So much like
electromagnetism leads to special relatvity, it also has hints of what needs to
be done in general relativity as well...

8


