
MP465 – Advanced Electromagnetism

Tutorial 10 (30 April 2020)

Another Radiation Example
In lecture, we’ve looked at the far-zone approximation for localised oscil-

lating sources and found expressions for all sorts of quantities. All of them
are based on having an expression for the electric dipole moment of the
charge/current configuration, which, for a single-frequency oscillation, has
the form ~p(t) = Re[~̃p0e

−ι̇ωt] for some constant complex vector (which we call
the dipole amplitude) ~̃p0. In most cases, what we’ll be given is a current

density of the form ~J(t, ~r) = Re[ ~̃J(~r)e−ι̇ωt] and we showed that the dipole
amplitude can be immediately computed from

~̃p0 =
ι̇

ω

∫
~̃J(~r) d3~r.

However, the example we’ll do here will start by assuming we already
have a dipole, specifically, one of constant magnitude p0 spinning around a
fixed axis with an angular speed ω, as shown on the next page.

Note that we’re allowing the angle between the dipole and the axis of spin
to be arbitrary, and we denote it by α, What would ~p(t) be in this case? First,
pick a coordinate system so that the dipole’s “tail” is at the origin and the
axis of spin is the z-axis. This makes the z-component of the dipole constant
in time, and if the dipole’s magnitude is p0, simple trigonometry says that it’s
p0 cosα. If we project the tip of the dipole onto the xy-plane, we see that it
traces a circle of radius p0 sinα, and if we assume the motion is anticlockwise,
the unit vector giving its direction in the xy-plane is cosωt êx + sinωt êy. All
of this together gives the time-dependent dipole moment as

~p(t) = p0 sinα cosωt êx + p0 sinα sinωt êy + p0 cosα êz.

However, as we discovered, it’s only moving dipoles that radiate EM waves,
so the constant z-component will not contribute to this and can be ignored
in finding ~̃p0. Thus, what we want is a dipole amplitude such that

Re
[
~̃p0e

−ι̇ωt
]

= p0 sinα cosωt êx + p0 sinα sinωt êy.
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We can always write any complex vector in terms of two real vectors, so let’s
do that here: there are two real vectors ~pR and ~pI such that ~̃p0 = ~pR + ι̇~pR,
and it’s easy to see that this gives

Re
[
~̃p0e

−ι̇ωt
]

= ~pR cosωt+ ~pI sinωt

and thus we have ~pR = p0 sinα êx and ~pI = p0 sinα êy. We now have our

dipole amplitude: ~̃p0 = p0 sinα (êx + ι̇êy).

We’re now in a position to pull out the expression for the far-zone mag-

netic field, because everything else comes from that. It’s ~B(t, ~r) = Re[ ~̃B(~r)e−ι̇ωt]
where

~̃B(~r) ≈ µ0ω
2

4πc

(
~r × ~̃p0
r2

)
eι̇kr.

This will give us the electric field using ~E(t, ~r) = Re[ ~̃E(~r)e−ι̇ωt] with ~̃E ≈

2



c ~̃B × êr. These can both be computed using the dipole we’ve derived, but
what we’re most interested in is the time-averaged power distribution dP̄ /dΩ,
because this will give us an idea as to how much EM radiation we get in any
given direction.

We derived this quantity in lecture, but let’s remind ourselves quickly of
how we get it: the time-averaged Poynting vector is

〈~S〉 =

〈
1

µ0

~E × ~B

〉
=

1

2µ0

~̃E(~r)× ~̃B∗(~r)

≈ c

2µ0

| ~̃B(~r)|2êr

≈ µ0ω
4

32π2c

|êr × ~̃p0|2

r2
êr

and this gives us the energy current density associated with the far-zone EM
radiation. Now we compute the cross-product: using Cartesian unit vectors
but writing their coefficients in spherical coordinates gives

êr × ~̃p0 = (sin θ cosφ êx + sin θ sinφ êy + cos θ êz)× (p0 sinα êx + ι̇p0 sinα êy)

= p0 sinα [−ι̇ cos θ êx + cos θ êy + sin θ(− sinφ+ ι̇ cosφ)êz] .

Recall that |~a|2 = ~a∗ · ~a, so

|êr × ~̃p0|2 =
(
êr × ~̃p0

)∗
·
(
êr × ~̃p0

)
= {p0 sinα [ι̇ cos θ êx + cos θ êy + sin θ(− sinφ− ι̇ cosφ)êz]}
· {p0 sinα [−ι̇ cos θ êx + cos θ êy + sin θ(− sinφ+ ι̇ cosφ)êz]}

= p20 sin2 α
[
cos2 θ + cos2 θ + sin2 θ(sin2 φ+ cos2 φ)

]
= p20 sin2 α (1 + cos2 θ)

where we’ve used sin2 + cos2 = 1 a couple of times. So our time-averaged
Poynting vector is

〈~S〉 ≈ µ0p
2
0ω

4 sin2 α

32π2cr2
(
1 + cos2 θ

)
êr.

We now surround our spinning dipole with a sphere of (very large) radius
r centred on the origin, so the above is the energy current density on the
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surface of this sphere. If we pick a small area dσ on this surface, then the
solid angle dΩ which subtends it is given by dσ = r2dΩ. The unit normal to
the sphere’s surface is êr, so the surface area element ia d~σ = r2dΩ êr. By
definition, the time-averaged power – the energy flow rate – through this bit
of surface is thus

dP̄ = 〈~S〉 · d~σ

≈ µ0p
2
0ω

4 sin2 α

32π2c

(
1 + cos2 θ

)
dΩ

and thus the power per solid angle – the power distribution – is

dP̄

dΩ
= 〈~S〉 · d~σ

≈ µ0p
2
0ω

4 sin2 α

32π2c

(
1 + cos2 θ

)
.

Note that this is maximised when θ = 0 or θ = π and minimised at θ = π/2,
so we see most of the radiated energy is along the axis of the dipole’s spin,
with very little radiated in directions perpendicular to this axis.

To find the total radiated power, we integrate the above power distri-
bution over all 4π steradians of the sphere. This is equivalent to taking
dΩ = sin θ dθ dφ and integrating θ from 0 to π and φ from 0 to 2π, giving

P̄ =

∫
4π

dP̄

dΩ
dΩ

≈
∫
µ0p

2
0ω

4 sin2 α

32π2c

(
1 + cos2 θ

)
sin θ dθ dφ

=
µ0p

2
0ω

4 sin2 α

32π2c

(∫ π

0

(sin θ + cos2 θ sin θ)dθ

)(∫ 2π

0

dφ

)
=

µ0p
2
0ω

4 sin2 α

32π2c

[
− cos θ − 1

3
cos3 θ

∣∣∣∣π
0

[φ|2π0

=
p20ω

4 sin2 α

6πε0c3
.

In the last step, we’ve replaced µ0 by 1/ε0c
2. We didn’t have to do this,

but it’s fairly common to have expressions in terms of µ0 when the sources
are magnetic in nature (currents and magnetic dipoles) and in terms of ε0
when the sources are electric in nature (charges and electric dipoles).
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The Instability of the Classical Hydrogen Atom
We can now use this formula to do a famous compution that lead, in

part, to the formulation of quantum mechanics. By 1910 or so, the structure
of the atom had been extensively studied and physicist and chemists were
trying to come up with a consistent way to model an atom. J. J. Thompson
had discovered the electron and realised that there were tiny, discrete bits
of negative charge in every atom. But an (nonionised) atom is electrically
neutral, so there had to be an equal amount of positive change. Thompson
proposed his “plum pudding” model, in which the electrons were embedded
like bits of fruit in a positively-charged lump of pudding. Heating the atom
could then release the electrons as cathode rays.

But about a decade later, Ernest Rutherford’s experiments showed that,
rather than being spread throughout the atom, the positive charge was actu-
ally all concentrated in an extremely small region at the atom’s centre, the
nucleus. So then the prevailing model was something like a solar system,
with most of the atom’s mass as the positive nucleus and the electrons or-
biting the nucleus like planets, with the attractive Coulomb force taking the
place of gravity. Seems reasonable, and this model still persists in popular
culture to this day.

The problem is, it can’t work. Why? Because, as we’ve seen, an accel-
erating charge radiates energy away. And an electron (or anything else, for
that matter) moving in a circular orbit does indeed accelerate. Thus, the
planetary model of an atom would imply that all atoms radiate energy.

The formula we just derived allows us to compute how much energy is
radiated, at least for a simple atom. So, take hydrogen. We assume the
proton is fixed at the centre with the electron moving in a circle of radius R
around it. But two charges separated by a distance defines an electric dipole!
So a charge of +e at the origin and −e located at a position ~R gives a dipole
of magnitude p0 = eR (pointing from the electron toward the proton). But
the movement of the electron around the nucleus means this dipole spins,
and so fits the example we’ve done. Since the orbit lies in a plane, α = π/2,
and so this tells us the rate at which the atom emits energy should be

P̄ ≈ e2R2ω4

6πε0c3
.

But what’s ω? The Coulomb force between the electron and the proton
is e2/4πε0R

2, and this must equal the centripetal force meω
2R, so ω2 =
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e2/4πε0R
3me, giving

P̄ ≈ e6

96π3ε30c
3m2

e

1

R4
.

If the atom’s total energy is E, this power is −Ė because it’s the rate at
which the atom loses energy due to radiation. But we know from Newtonian
classical mechanics that a central potential of the form V (r) = −k/r for
a positive k leads to bound circular orbits of radius R with total energy
E = −k/2R. For the Coulomb force, k = e2/4πε0, so E = −e2/8πε0R and
thus the rate at which atom’s energy changes is

dE

dt
=

d

dt

(
− e2

8πε0R

)
=

e2

8πε0R2

dR

dt

= −P̄

≈ − e6

96π3ε30c
3m2

e

1

R4
.

Solving this for Ṙ gives

dR

dt
≈ − 4

3m2
ec

3

(
e2

4πε0

)2
1

R2

= −4α2λ2ec

3

1

R2

where α = e2/4πε0~c ≈ 1/137 is the fine-structure constant and λe =
~/mec ≈ 3.86 × 10−13 m is the Compton wavelength of the electron. Now,
suppose the initial radius of the orbit at t = 0 is R0; then since the above
differential equation is separable, we see that the radius R1 at a time t1 is
given by the equation∫ t1

0

dt = − 3

4α2λ2ec

∫ R1

R0

R2dR

which gives

t1 =
R3

0 −R3
1

4α2λ2ec
.
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So now we ask the following question: if the orbit’s initial radius was the
Bohr radius a0 = 5.29 × 10−11 m, how long would it take for the electron
to spiral into the nucleus? This uses R0 = a0 and R1 = 0, and putting all
the numbers in gives an answer of about 1.6× 10−11 seconds. So a classical
hydrogen atom has a lifetime of around sixteen trillionths of a second, and if
this was the correct model of an atom, all hydrogen (not to mention every
other element) in the universe would be long gone by now.

Now, some approximations were made here, obviously, but the basic
maths is correct and we’re correctly applied the laws of electromagnetism.
The problem is that we’ve assumed that Newtonian classical mechanics holds
at the subatomic level, and this result is an indication that maybe that’s just
not true. And that seems to be the case: we need quantum mechanics to
describe the behaviour of fundamental particles. This calculation we’ve just
done is virtually identical to the one that made Niels Bohr start thinking
about his own model of the atom, and the rest, as they say, is history.

Types of EM Radiation
In lecture, I used a Fourier transform-based argument to derive the far-

zone approximation for the magnetic field for any time-dependence of the
electric dipole moment, and came up with

~B(t, ~r) ≈ µ0

4πc

(
~̈p(t− r/c)× ~r

r2

)

and ~E still approximately given by c ~B× êr. Now, since we don’t assume the
sources are rapidly oscillating, there’s no need to time-average anything, so
we get a Poynting vector

~S ≈ 1

µ0

(
c ~B × êr

)
× ~B

=
c

µ0

| ~B|2êr

≈ µ0

16π2cr2
|~̈p(t− r/c)× êr|2.

Thus, we see that the sources radiate only if the second derivative of the
dipole moment is nonzero. So it’s acceleration that causes radiation, not just
movement. For the case of a single charge, this means that there are two
very common cases where we expect electromagnetic radiation.
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The first is the type we just saw in the classical hydrogen atom, where
the charge is going around in a circle. But this isn’t just confined to a
charge in orbit around another, it’s also true when we use other means –
like, say magnetic fields – to force a charge to follow a circular path. Because
this is exactly what’s done in many particle accelerators (like the LHC at
CERN), this radiation is named after the first circular accelerator originally
developed in Berkeley: cyclotron radiation. This is a very real issue at big
accelerators; as an exercise for yourself, look up some of the experiments
done with the LHC and use the calculations we’ve done to find the power
radiated. In many cases, it’s enough to easily fry a human instantly, and
so all big circular accelerators must be heavily shielded in order to prevent
incinerating all those poor little physicists and technicians working on them.

The other common type of radiation shows up when a charge is travelling
on a more-or-less straight path, but its speed changes. Since this generally
consists of a charged particle being created and then slowing down as it moves
through a detector (or some other medium), it’s called Brehmmstrahlung,
German for “braking radiation”. If the rate of deceleration of the particle is
small, this radiation isn’t too big, but if a charged particle hits something
and slows down very rapidly, it can be extreme and thus in such situations,
shielding will also be required. Problem 2 on Problem Set 5 is a simplified
version of this. If you’re curious, you can put in some numbers that might
come up in a real lab setting into the result of that problem to get an idea
of the power that would be radiated as Brehmmstrahlung.

(These obviously aren’t the only two types of time-dependence that will
give a nonzero dipole second derivative, but they’re the two most common,
which is why they have their own names.)
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