
MP465 – Advanced Electromagnetism

Tutorial 7 (1 April 2020)

Fun with the Levi-Civita Symbol
In this tutorial, we’ll look at an object that I suspect most of you have

encountered before may not have suspected how useful it is in doing many
of the types of calculations we come across in this (and other modules). It’s
called the Levi-Civita symbol (after Tullio Levi-Civita) εijk, and is a three-
index object, where each index can take on the value 1, 2 or 3 (or x, y, z if
we think of the indices aas labelling the Cartesian components of a position
vector) and is either 1, -1 or 0 depending on the indices. Here’s the definition:

εijk =


+1 when (ijk) is an even permutation of (123),
−1 when (ijk) is an odd permutation of (123),

0 when any two indices are the same,

By “even” and “odd” permutation, we mean the number of pair-swaps you
need to get from the given values of (ijk) to (123). For example, (312) is
an even permutation because you can get to (123) in two pairwise-swaps:
(312)→ (132)→ (123). So using this rule, the three even permutations are
(123), (231) and (312), and the three odd ones are (321), (213) and (132).

This definition makes εijk totally antisymmetric, i.e. any swap of two
indices changes the sign. For example, for any choice of index values, εkji =
−εijk because you can get (kji) from (ijk) by swapping i and k. In fact, any
totally antisymmetric object Aijk must be proportional to the Levi-Civita
symbol (provided the indices can only take on the values 1, 2 and 3). And
if Mij is antisymmetric in i and j, then there must exist three numbers m1,
m2 and m3 such that

Mij =
3∑

k=1

εijkmk.

(Henceforth, all sums in this tutorial will be assumed to run from 1 to 3.)
We could have used this in lecture; recall that we showed that

∫
x′jJi(~r

′) d3~r ′

was antisymmetric in its indices. Therefore, we would have known that there
exists a vector ~m whose components are defined by∫

x′jJi(~r
′) d3~r ′ =

∑
k

εjikmk
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and this vector is precisely the magnetic dipole moment.

As I said, you’ve likely seen this symbol before. For example, if you’ve
studied angular momentum (AM) in quantum mechanics, you’ve probably
seen the commutation relations for the three AM operators Jx, Jy and Jz
written as

[Ji, Jj] = ı̇h̄
∑
k

εijkJk.

However, I’m guessing that the main place you’ve seen it is in the definition
of the cross product of two three-dimensional vectors: if ~a and ~b are both
3-vectors, then ~c = ~a×~b is also a 3-vector with components(

~a×~b
)
i

=
∑
j,k

εijkajbk.

Thus,

cx =
∑
jk

ε1jkajbk

= ε123a2b3 + ε132a3b2

= aybz − azby,

where in the second step we used the fact that the only nonzero values of ε
in the sum are the ones with three different indices.

Similarly, the curl of any vector may be written as

(
~∇× ~a

)
i

=
3∑

j,k=1

εijk∂jak

where ∂j is a shorthand for ∂/∂xj. However, it’s worth noting that this
formula hold only for the Cartesian components of the curl. In a curvilinear
coordinate system, it’s more complicated.

Now, one of the most useful identities that the Levi-Civita symbol satisfies
is the one involving the product of two of them summed over one of the
indices, namely, ∑

k

εijkεmnk δimδjn − δinδjm,
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where δ is our old friend, the Kronecker delta symbol. It’s this which gives
us one of the most famous vector identities of all, that for the vector triple
product ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) (or “back minus cab”, as I learned it
way back in the day). Here’s the proof:[
~a× (~b× ~c)

]
i

=
∑
k,j

εijkaj(~b× ~c)k

=
∑
k,j

εijkaj

(∑
mn

εkmnbmcn

)

=
∑
j,m,n

ajbmcn

(∑
k

εijkεmnk

)
=

∑
j,m,n

ajbmcn (δimδjn − δinδjm)

=

(∑
m

bmδim

)(∑
j,n

ajcnδjn

)
−

(∑
n

cnδin

)(∑
j,m

ajbmδjm

)
= bi (~a · ~c)− ci

(
~a ·~b

)
and we’re done. In Problem Set 3, I’ve given a couple of similar identities to
you to prove.

Another place the Levi-Civita symbol appears is as a way to compute the
determinant of a 3 × 3 matrix. If A is any such matrix with Aij its entries,
then ∑

`,m,n

ε`mnAi`AjmAkn = εijk detA

or, since ε123 = 1,

detA =
∑
`,m,n

ε`mnA1`A2mA3n

ant this is actually the formula you’re using when you figure out minors and
cofactors and the like when computing detA, believe it or not.

And this also gives us the most common way to compute the cross prod-
uct: the above formula for (~a×~b)i gives the vector form ~a×~b =

∑
ijk êiajbk.

But suppose we define a “matrix” M whose entries are given by M1i = êi,
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M2j = aj and M3k = bk. This matrix has the three Cartesian unit vectors
in its top row, its middle row are the components of ~a and its bottom row
are the components of vecb. Using the determinant formula above, we see

~a×~b =
∑
ijk

êiajbk

=
∑
ijk

M1iM2jM3k

= detM

=

∣∣∣∣∣∣
êx êy êz
ax ay az
bx by bz

∣∣∣∣∣∣
which is probably how a lot of you compute cross products. Now you know
why it works!

To finish this tutorial, let’s prove a vector calculus identity that I men-
tioned in the last lecture, namely,∫

V

~∇× ~a d3~r =

∮
Σ

d~σ × ~a.

The ith component of this equation is∫
V

(
~∇× ~a

)
i
d3~r =

∮
Σ

(d~σ × ~a)i .

and this is what we’ll prove.
We gave the formula for the ith component of the curl of a vector above,

and hopefully you all see it can be rewritten as

(
~∇× ~a

)
i

=
∑
j

∂j

(∑
k

εijkak

)
= ~∇ ·~bi

where ~bi is the vector with components (~bi)j =
∑

k εijkak (e.g. ~b1 = az êy −
ayêz). Thus, if we integrate this curl over a region of space V with boundary
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Σ, we see ∫
V

(
~∇× ~a

)
i

d3~r =

∫
V

~∇ ·~bi d3~r

=

∮
Σ

~bi · d~σ

=

∮
Σ

∑
j

(
~bi

)
j
dσj

=

∮
Σ

∑
j,k

εijkdσjak

=

∮
Σ

(d~σ × ~a)i

and so we have the vector calculus identity∫
V

~∇× ~a d3~r =

∮
Σ

d~σ × ~a.
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