MP465 — Advanced Electromagnetism

Tutorial 6 (24 March 2020)

Moving Charge Distributions

Another factoid about magnetostatic systems: we know (hopefully) at
this point that currents are due to moving charges. How exactly does that
work? More specifically, if we have a charge distribution characterised by a
density p(7) and the velocity field of this distribution is %(7), what current
density J(7) does this give?

Those of you who took Fluid Mechanics may already know the answer,
but let’s figure it out here anyway: we pick a point 7 and look at a very small
region around it so that all quantities may be approximated by their values
at that point. Now, let 72 be a unit vector in the same direction as @ at this
point. We now pick some tiny surface element dG whose normal is 74 and ask
how much charge Aq will flow through this area in a small tims At.

If u = |4, the charge distribution will travel a distance uAt in this time.
- The total volume of charge moving through the area do = |d7| in this time
will therefore be uAtdo, as shown below:

But since % and d& are parallel, udo = %-dd so the total volume crossing
the area element in At is @ -d&At, which means that the total charge flowing
through this element is Aq = p@i- dg’At. Since Ag/At is the current, we thus
find the little bit of current d/ flowing through the surface element dd is

dIl = pi-do.

But recall the definition of the current density: if do' is a surface element
located at 7, then the current flowing through this element is J(7) - d&.
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Therefore, we have what we're after: if a charge configuration with density
p(7) moves with a velocity field #(7), then it has an associated current density

J(M) = p(Ma(.

(Important: we assumed a static system here, i.e. no time dependence. This
result only holds for such systems.)

Let’s use this fact to find the magnetic field and magnetic dipole moment
of a spinning disc of charge. Take an infinitely-thin disc of radius a with a
charge ¢ distributed uniformly, giving a surface charge density of o = g/ma?.
If we define a cylindrical coordinate system such the disc lies in the zy-
plane with its centre at the origin, then the correct charge density for this is
p(r, ¢,z) = 0d(z) for r < a and zero everywhere else.

Now we spin the disc around the z-axis with a constant angular velocity
W = wé,. We know from basic rotational mechanics that the velocity at a
position 7 = ré, + z€, is 4 = & X 7, so we get the velocity field u(r, ¢, z) =
wrég. From what we just derived, this gives us a current density

f(r,qS,Z) = owrd(z)és

for r < a and zero elsewhere.
To get the magnetic field, we’ll of course use the formula

. po [JF) X (F=7) 5
B = — d
(T_) ' A7 / ‘7—"_ F/|3 r,

but once again we’ll find that we need elliptic integrals to get this for arbitrary
7. So let’s limit ourselves to finding this field only on the z-axis, namely,
7 = z€,. It’s easy to show that

J() x (F=7) = owr'§(#)[(z—2)ew +1'&],

=7 = )+ (z— )

SO

B0,62) = Ho awrd(z)[(z—z)erf—i—rez]T,dr,dd),dz,
4n (M2 + (2 = 2)7]) ™
_ oo / () (o £ 1'8) 41y
4 [(r)? + z2]3/2
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after doing the 2’ integral.

Now, notice that the only dependence on ¢’ in the integrand is in é. =
cos ¢’ é, + sin ¢’ &,, but since both the sine and cosine integrate to zero over
the interval [0, 27|, the first term in the numerator vanishes, leaving

B’(O 6,2) = U'OO'W/ (T/)3éz dr' d¢’
' ¥ - A7 [(T’)2+22]3/2

o [ )3 ,
— Ho / ( ) 37 d?"
2 0 [(7,;)2 _'_zz}

since wé, = &. Thus, as expected, the magnetic field is purely in the z-
direction. This integral is easily done by noticing that

(7”)3 o {(7"’)2 + 22— zz}
[+ )™

7‘/ r/zz

etz [+
giving

- 2

B(0,6,2) = B2 |y + 2+ ——=
(r’)2+z2

= ﬁoa_c?i_ V22 +a? +
2

where we used v22 = 22/V22 = |2].

Now, if |z| > a, then expanding the first two terms gives

2 4
V22 +a? = |z 1+a—2z|z|+f———-—a ,
|2/? 2lz[  8l2?
22 _ lz| o a? N 3a*
VZta® 1+|_G_|ZEN 2z 8z[?
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which gives

pooatd

B(0,¢,2) PN

Why do we care about this? Well, we know the leadingvterm in the multipole

expansion for a magnetic field is the dipole contribution, so we can use the
above approximation to check this: the magnetic dipole moment is

1 g
M= —/F’XJ(F’) &

2
= % (r'éw + 2'¢,) x r'§ () éy r' dr' d¢’ d2’
= 5 [ (" edrdy
roatw |
= €.
4

The dipole field given in spherical coordinates (i.e. where r = |r]) is

- wo 3(m-7)7 —r*m
Bl - - )
47 rd

which, for the dipole we have here, is

B pooatw 327 — r2é,
1 =
16 r5

so if we’re on the z-axis, ¥ = zé, and r = |z|, and you can show quickly that

4=
= HoOa~W
B, =
' 8z[°

which is exactly what we got from our explicit computation in the |z| > a
case. Yay!

Potential Energy of a Magnetic Dipole
In lecture, I said that the potential energy of a magnetic dipole moment
m in a magnetic field B is V = —m - B. As promised, we’ll prove this now...
We start with a point dipole m. We’re free to choose any coordinate
system we like for this discussion, so pick one such the dipole is at the origin
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and it points in the positive z-direction: m = mé,. We know from lecture
that one way to model such a dipole is to take a tiny loop of constant current
in the zy-plane, flowing anticlockwise, and taking the loop size to zero while
keeping the quantity m = (current) X (area inside loop) constant.

So let’s take a square loop of side length a with a constant current [
flowing around it, so m = Ia? is the dipole magnitude. If the square is
centred at the origin with its sides parallel to the z- and y-axes, then the
midpoints of each side are (+a/2,0,0) and (0,+a/2,0), as shown below:

NZE

To find the fz)(rce on this loop due to an external magnetic field, we use
the Lorentz force law in the form F = / J x Bd37. However, as we’ve fone
several times for a 1-dimensional system, we replace J 437 with Id7, and so
the total force on a closed loop C of current is

F = ?if(f)dfxB(r—)_

In this case, C is a square so the integral can be broken up into four line
integrals, one for each side, indicated in the picture above. Now the key
point: because the loop is so small, the magnetic field does not change much
over each side and so we approximate it by its value at the midpoint of
each side. So on segment Cs, the field is approximately B(a/2.0.0). On this
segment, dr = &,[y with y going from —a/2 to a/2, so the contribution to
the force is

—

A o= 7{ [(7)dFx B (7

C1

Q

a/2 .
/ 1é, x B(a/2,0,0)dy

—a/2
— TIa[B.(a/2,0,0)é, — Bu(a/2,0,0),].

5



Very similar arguments give the other three contributions as

Fy = Ia[B,(0,a/2,0)é, — B,(0,a/2,0)é,].
Ia[B;(—a/2,0,0)é, — B,(—a/2,0,0)é,] .

Fy =~ Ia[B,(0,—a/2,0)é, — B,(0,—a/2,0)é,]

3
2

so the total force is approximately ‘
F ~ Ia {[B.(a/2,0,0) — B,(—a/2,0, 0)] és + [Bz‘(O,a/Z, 0) — B,(0,—a/2,0)] &,

+ [Bz(—a/2,0,0) — B;(a/2,0,0) + B,(0,—a/2,0) — By(0,a/2,0)] &,}.
It’s easy to show that, for any function f(s), if h is very small, f(s+ h/2) —
f(s—h/2) = hf(s) + O(h?), so we see the above is, to O(a?),

. B, . 9B, . [8B, 0B, .
F ~ Id {a (0,0,0)é, + % “2(0,0,0)é, — % ~—~2(0,0,0) + o (0,0,0)} ez}.

Notice that the z component is 0B,/0z — V-B evaluated at the origin, but
since V-B =0 everywhere, we get

. B, | 9B . 0B, .
F ~ Ia? {a (0,0,0)é, + %5 (0,0,0)6y+5(0,0,0)ez}

= Ia®VB,(0,0,0).

But Ia? = m, the dipole magnitude, and B, = &, - E,'so the force on the
dipole at the origin (i.e. where the dipole is located) is

F =~ ﬁ(méz-g)
- 6(m-1§)

with the approximation becoming better as a — 0. Thus, the above is the
force on a dipole in a magnetic field.
However, we notice that the force is conservative, and thus we propose a

potential energy function V' such that F = —VV. From the above, we see
exactly what we need, and so
V) = —m- B

gives the potential energy of a point magnetic dipole placed at a position 7
in an external magnetic field.



