MP465 — Advanced Electromagnetism

Problem Set 2
Due by 5pm on Thursday, 26 March 2020

1. The dipole contribution to the scalar potential is
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where 7 = |r]. Show from this that the dipole contribution to the
electric field is thus
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2. A thin spherical shell of radius R has a charge density given in spher-
ical coordinates (with the origin at the shell’s centre) by p(r,0,¢) =
00 sin(2¢)d(r — R), where o is a constant.

(a) Show that the electric monopole and dipole moments of the shell
are zero.

(b) Show that the only nonzero elements of the electric quadrupole
moment are (), and @), and calculate them.

(c¢) Using your answer from (b), find the quadrupole contributions to
the scalar potential and the electric field.

(You'll find this problem easier to do if you utilise the fact that, for
nonnegative integers m and n, the integral of sin” ¢ cos™ ¢ from ¢ = 0
to 27 vanishes unless m and n are both even integers.)

3. A uniformly-charged spherical shell spinning at a constant angular fre-
quency & has two remarkable properties which we’ll explore in this
problem and the next. First off, if the sphere has radius a and a total
charge ¢, then its current charge density is given by
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J(r,0,¢) = Ksinfd(r —a)éy



in a spherical coordinate system with an origin at the sphere’s centre
and with the z-axis along the sphere’s axis of spin (i.e. @ = wé,). Here,
K is a constant (called the “line current density”) equal to qw/4ma.

The first remarkable property is that the magnetic field inside the
sphere is constant. We will not prove this here; instead we’ll sup-
port this claim by showing that the magnetic field along the z-axis is
constant. Do this, with the following hints:

e Remember that in spherical coordinates, the positive z-axis is de-
fined by § = 0 and the negative by § = 7, and we’re only consid-
ering the 0 < r < a case (i.e. inside the sphere);

e Make sure you use the fact that v/s? = |s| (and not just s) for any
real number s;

e Use the symmetry of the system to simplify any computations;

e In computing the field, you should be able to do the " and ¢’
integrals easily, but the 6’ integral may look impossible. However,
it can be done if you make the change of variables p = cos @’ and
use the integrals
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(You should be able to prove both of these, but you don’t have

to.)

Using these hints, you should be able to find B (r,0,¢) along the z-axis
inside the sphere and show that it’s constant.

. Now we look outside the sphere, i.e. r > a. The second remarkable
property of this system is that the magnetic field in this region is ex-
actly, not approximately, that of a magnetic dipole m located at the
origin. We want to support this claim by once again finding the mag-
netic field on the z-axis.

(a) Using the same hints as in Problem 1, but keeping in mind we
now have r > a, find the magnetic field along the z-axis.



(b) Calculate the shell’s magnetic dipole moment and show that your
answer in (a) exactly agrees with
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when 7 is a point on the z-axis.



VECTOR CALCULUS FORMULAE

1. Cartesian coordinates (z,y, z) with constant unit direction vectors é,,
€y, €2
e position vector: 7= xé, + yé, + z¢é,
e line element: dr =dzé, +dyeé, +dze,

surface element: do = dydzé, +drdzé, +dxdye,
volume element: d37 = dx dy dz

e gradient of a function f(z,y,2):
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e divergence of a vector A(x,y,2) = Ay(z,y, 2)é, + Ay(z,y, z)é, +
A (z,y,z)é,:
0A, 04, O0A,
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e curl of a vector A(z,y, 2) = A,(z, v, 2)e,+A (x,y, 2)e,+A (v, y, 2)é,:
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e Laplacian of a function f(z,y, 2):
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2. Cylindrical coordinates (7, ¢, z) with unit direction vectors é,, ég4, €,

e relation to Cartesian coordinates: x = rcos¢, y = rsin¢g, z un-
changed

e relation to Cartesian unit vectors:

€r = COSP e, +singe, o €r = COS P e, —singéy
€y = —sing e, + cos @ e, €y = Sin@ €, + cos ¢ €y

with é, the same for both systems.
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position vector: 7= ré, + zé,

line element: d7=dreé, + rdgég +dzé,
surface element: do = rd¢ dzeé, +drdzés +rdrdeeé,
volume element: d*7 = rdrd¢dz

gradient of a function f(r, ¢, z):

0z
divergence of a vector ff(r, ¢, 2) = Ap(r, ¢, 2)é, + Ap(r, ¢, 2)ép +
A (r, ¢, 2)é,:
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curl of a vector E('r’, ¢,2) = A (1,0, 2)é,+Ay(r, 0, 2)és+AL(1, P, 2)é,:
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Laplacian of a function f(r, ¢, 2):
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3. Spherical coordinates (, 6, ¢) with unit direction vectors é,., ég, €,

e relation to Cartesian coordinates: x = rsinf cos ¢, y = rsinfsin ¢,
z=rcost

e relation to Cartesian unit vectors:
ér =sinfcospé, +sinblsingé, +cosde,
€g = cosfcospé, +costlsinge, —sinf e,
€y = —singe, +cospe,
€y = sinflcos@é, + cost cospéy —sin g &,
> €, = sinfsin ¢ é, + cos 0sin ¢ &y + cos ¢ €4
€, =cosfé, —sinbég

e position vector: 7= ré,

e line element: dr =dreé, +rdféy+ rsinfdeé,
surface element: dé = r*sinfdfd¢é, +rsinfdrdegég+rdrdfé,
volume element: d*7 = r?sin@dr df d¢

e gradient of a function f(r,6, ¢):
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e curl of a vector X(r, 0,0) = A.(r,0,p)é,+Ap(r,0, d)ég+As(r,0, d)éy
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e Laplacian of a function f(r, 0, ¢):
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