MP465 — Advanced Electromagnetism
Problem Set 1

Due by 5pm on Thursday, 5 March 2020

1. Consider the following electrostatic potential, expressed in spherical

coordinates:
1 1 2
a(r0,6) = -2 <—+—>exp(~—“").
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where ¢ is a constant and a is a positive constant. The charge density
that gives this potential has the form

p(r,0,¢) = AS® (7)+ B(r)

for some constant A and some function B(r). We wish to find both
and interpret the results.

(a) For r > 0, only the second term in p appears. Using p = —¢V?®,
compute it.

(b) The first term in p comes from what happens at 7 = 0. To find
it, integrate p over a sphere of radius R centred at the origin and
show that this integral does not vanish in the limit R — 0 and thus
determine the value of A. (Hint: remenber that V2® = V- (6(13))

(c) Now suppose ¢ = e, the fundamental unit of electric charge (1.602x
107 C, not Euler’s constant 2.7182818...) and a = ag, the Bohr
radius (5.292 x 107 m). Given that the wavefunction for the
ground state of a hydrogen atom is

Y100 (F) = = €Xp <—L> )
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explain why this charge density is the correct one describing a
quantum-mechanical hydrogen atom in its ground state (from
which it immediately follows that ® is the correct potential due
to the entire atom).



2. A thin disc of radius a and constant surface charge density o lies in the
xy-plane with its centre at the origin. The dens1ty describing this disc
in cylindrical coordinates is

p(r,¢,2) = 06(2)

for r < a, and zero otherwise. In tutorial, we found the potential
®(r, ¢, z) and used it to show that the electric field along the z-axis
was

— (o} z R
E(O, ¢, Z) = 2_60 (Sgn(z) — -ﬁ) €.

However, we can also use the formula that gives E dire_ctly:

B = — /p(F’)(F—F')dsf’,.
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Show that using this gives the same result we obtained in tutorial.

3. A thin rod of length L and uniformly-distributed charge ¢ lies along
the z-axis with its centre at the origin.

(a) Write down an expression for the density p(r, ¢, 2) as a function
of the cylindrical coordinates (, ¢, ) in terms of the linear charge
density A = ¢/L.

(b) Find the potential ®(r, ¢, z).

4. A perfect conductor fills up a region of space given in Cartesian coor-
dinates by z < 0, y < 0. A particle of charge ¢ is placed near this
conductor such that its position in Cartesian coordinates is (a, b,0), as
shown below: :

Y

We find the potential for this system using the method of images
as follows: two image charges, each with charge —q, are placed at
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(a, —b,0) and (—a,b,0) and an image charge with charge ¢ is placed at
(—a,—b,0).

(a) Show that with these image charges included, the potential every-
where on the conductor’s surface is zero.
(b) Compute the electric field in the region outside the conductor.

(c) Use your answer for (b) to find the surface charge density on the
conductor and confirm that its integral over the surface is equal
to the sum of all the image charges.

(Depending on how you do (c), the following identity may prove useful:
for any real number z, arctan(z) + arctan(1/z) = n/2.)



VECTOR CALCULUS FORMULAE

1. Cartesian coordinates (z,y, z) with constant unit direction vectors é,
€y, €2
e position vector: 7= zé; + yé, + z€,

e line element: dr =dzé, +dyé, +dze,
surface element: dd' = dydzé, +dzrdzé, +drdye,
volume element: d*7 = dzdydz

e gradient of a function f(z,y, 2):

L. of. of,  9f,
Vf = ax€z+ay€y+5£€z

o divergence of a vector A(z,y, z) = Ax(z,y, 2)és + Ay(z,y, 2)é, +
A (z,y,z)é,:

o curl of avector A(z,y, z) = Ay(,y, 2)éx+A, (1, 2)é,+A(z,y, 2)é,:

- o [0A, 0A)\ 0A, OA,\ . BA, 04, .
VXA*(ay W)e”(az W)eﬁ(ax ay>ez

e Laplacian of a function f(z,y, 2):

2f  2f of
2 — R R PR
ViI = 2t 52t a2

2. Cylindrical coordinates (r, ¢, z) with unit direction vectors é,, &g, €,

e relation to Cartesian coordinates: z = rcos¢, y = rsin¢, z un-
changed

e relation to Cartesian unit vectors:

ér =cospé, +singé é; =Cospé, —singé
Y RN ¢
€y = —singé; +cospe, éy =sin@é, + cos ¢ &

with é, the same for both systems.
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position vector: 7= ré, + zé,

line element: di'=dré, +rdgés + dzé,
surface element: do’ = rd¢dzé, +drdzé, +rdrdgé,
volume element: d37 = rdrd¢dz

gradient of a function f(r,d, 2):

divergence of a vector ff(r, ¢,2) = Ap(r, ¢, 2)ér + Ay(r, ¢, 2)é4 +
AL(r, ¢, 2)é;
10 18A¢> BA
+

curl of a vector A(r, ¢, 2) = Ap(r, ¢, 2)ér+Ay(r, ¢, 2)é5+ A, (r, ¢, 2)é,:

= _ [10A, 0Ay)\ 0A, 0A,\. 1[0
Ixd = (155 ) e (G ) e s (mra0

Laplacian of a function f(r, ¢, z):

( af)+ 182f+82f

"or r2 0¢?
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3. Spherical coordinates (r,6, ¢) with unit direction vectors &, &y, é4

e relation to Cartesian coordinates: z = rsinf cos ¢, y = rsinfsin ¢,
z=rcosf

e relation to Cartesian unit vectors:
é, =sinfcospé, +sinfsingé, + cosfé,
ép = cosfcospé, + cosfsingpé, —sinbé,
€s = —singé, +cospéy
é; =sinfcospé, + cosf cospéy —sin g,
> €y =sinfsin¢é, + cosfsin @ €y + cos P €y
é, =cosfé, —sinfé,

e position vector: 7= ré,

e line element: dr¥ =dré, +rdfés + rsinfdeé,
surface element: dé = r?sinfdfd¢é, +rsinfdrdeéy+rdrdfé,
volume element: d37 = r?sinfdr df d¢

e gradient of a function f(r,0,¢):

=, _ Of, 18f 1 of,
Vi = 5t % remeas?
e divergence of a vector ff(r, 0,0) = An(r,0,0)é, + Ag(r,0,0)é9 +
A¢(T,9,¢)é¢l . )
1 o4

o .
(sinfAq) + rsind O0¢

1
rsind 00

- 10
V-A = 25 (r*A,)
e curl of a vector fT(r, 0,0) = An(r,0,0)é,+Aq(r, 0, d)ég+Ap(r, 0, d)ép
S o 1 0 0Ap\ . 1 0A, 10
VXA = rsin 6 (89<Sm€A¢) 8¢)6T+<rsm9 8¢ ré)'r( A )>
1/0 0A,
T <ar(“4") 36 )

e Laplacian of a function f(r,0, ¢):

,0f 1 8 (. .0f 1 of
2 — — .
Viio= r28r< 37‘)+rzsin¢939 <S 080>+r25in298¢2




