AUTUMN REPEAT

MP465

Advanced Electromagnetism

Prof. D. A. Johnston, Prof. P. Coles and Dr. P. Watts

Time allowed: 2 hours
Answer ALL questions
All questions carry equal marks

	Yes	No	N/A
Formula and Tables book allowed (i.e. available on request)	\checkmark		
Formula and Tables book required (i.e. distributed prior to exam commencing)	\checkmark		
Statistics Tables and Formulae allowed (i.e. available on request)	\checkmark		
Statistics Tables and Formulae required (i.e. distributed prior to exam commencing)		\checkmark	
Dictionary allowed (Supplied by the student)			\checkmark
Nonprogrammable calculator allowed	\checkmark		

1. An electrostatic system has the following charge density:

$$
\rho(\vec{r})=q_{1} \delta^{(3)}\left(\vec{r}-\vec{r}_{1}\right)+q_{2} \delta^{(3)}\left(\vec{r}-\vec{r}_{2}\right)+q_{3} \delta^{(3)}\left(\vec{r}-\vec{r}_{3}\right)
$$

where q_{i} and \vec{r}_{i} for $i=1,2,3$ are constants.
(a) Describe in words and/or pictures the particular charge configuration that gives this density.
[5 marks]
(b) Find the electric monopole and dipole moments if

$$
\begin{aligned}
& q_{1}=q_{2}=Q, q_{3}=-3 Q \\
& \vec{r}_{1}=a\left(\hat{e}_{x}+\hat{e}_{y}-\hat{e}_{z}\right), \vec{r}_{2}=a\left(\hat{e}_{x}-\hat{e}_{y}+\hat{e}_{z}\right), \vec{r}_{3}=\overrightarrow{0},
\end{aligned}
$$

where Q and a are constants, and thus determine the first two terms in the multipole expansion of the scalar potential (expressed as a function of x, y and z).
[10 marks]
(c) Repeat (b) for the following:

$$
\begin{aligned}
& q_{1}=Q, q_{2}=-Q, q_{3}=Q \\
& \vec{r}_{1}=\frac{a}{\sqrt{3}} \hat{e}_{z}, \vec{r}_{2}=\frac{a}{2}\left(\frac{1}{\sqrt{2}} \hat{e}_{x}+\frac{1}{\sqrt{2}} \hat{e}_{y}-\frac{1}{\sqrt{3}} \hat{e}_{z}\right), \vec{r}_{3}=-\frac{a}{2}\left(\frac{1}{\sqrt{2}} \hat{e}_{x}+\frac{1}{\sqrt{2}} \hat{e}_{y}+\frac{1}{\sqrt{3}} \hat{e}_{z}\right) .
\end{aligned}
$$

[10 marks]
2. A piece of wire is bent into a square of side length a, and a constant current of magnitude I is run through it. Let \hat{n} be the unit normal vector to the plane the square is in such that when looking in the same direction as \hat{n}, the current flows conterclockwise.
(a) Find the magnetic dipole moment of the square expressed in terms of \hat{n}.
[10 marks]
(b) Find the magnetic field at the centre of the square, again expressed in terms of \hat{n}.
[15 marks]
3. Consider a time-dependent charge/current distribution localised near the origin. In the far-zone approximation, the magnetic and electric fields are given by

$$
\begin{aligned}
& \vec{B}(t, \vec{r}) \approx \operatorname{Re}\left\{\frac{\mu_{0} \omega^{2}}{4 \pi c} \frac{\vec{r} \times \tilde{\vec{p}}_{0}}{r^{2}} e^{-i \omega(t-r / c)}\right\}, \\
& \vec{E}(t, \vec{r}) \approx \frac{c \vec{B}(t, \vec{r}) \times \vec{r}}{r}
\end{aligned}
$$

where $\vec{p}(t)=\operatorname{Re}\left(\tilde{\vec{p}}_{0} e^{-i \omega t}\right)$ is the time-dependent electric dipole moment of the distribution.
Suppose our distribution is such that the electric dipole has constant magnitude p_{0} and spins in the $x z$-plane with a constant angular speed ω, namely,

$$
\vec{p}(t)=p_{0}\left(\sin \omega t \hat{e}_{x}+\cos \omega t \hat{e}_{z}\right)
$$

(a) Find the complex vector $\tilde{\vec{p}}_{0}$ such that this can be written as $\vec{p}(t)=\operatorname{Re}\left(\tilde{\vec{p}_{0}} e^{-i \omega t}\right)$.
[5 marks]
(b) Show that the time-averaged power distribution of the electromagnetic radiation is, in spherical coordinates,

$$
\frac{\mathrm{d} \bar{P}}{\mathrm{~d} \Omega}=\frac{\mu_{0} \omega^{4} p_{0}^{2}}{32 \pi^{2} c}\left(1+\sin ^{2} \theta \sin ^{2} \phi\right)
$$

[10 marks]
(c) Find the total time-averaged power \bar{P} radiated away by this dipole.
[10 marks]
4. The field strength and dual field strength of an electromagnetic field derived from the 4-potential $A^{\mu}=(\Phi / c, \vec{A})^{\mathrm{T}}$ are, respectively,

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad \star F^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \lambda \rho} F_{\lambda \rho} .
$$

For a plane wave, we know that if \vec{k} is the wave vector in the direction of propagation, then $(\vec{E}, \vec{B}, \vec{k})$ form a right-handed triad with $\vec{B}=\vec{k} \times \vec{E} / \omega$ and $\omega=|\vec{k}| c$. Show that all of these properties may be inferred from the following two identities:

$$
F_{\mu \nu} k^{\nu}=0, \quad \star F^{\mu \nu} k_{\nu}=0
$$

where k^{μ} is the 4 -vector $(\omega / c, \vec{k})^{\mathrm{T}}$.
[25 marks]

MAXWELL'S EQUATIONS

- For electric field \vec{E}, displacement field \vec{D}, magnetic field \vec{B}, magnetic intensity \vec{H}, free charge density ρ and free current density \vec{J} :

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{D}=\rho, \quad \vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \\
\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{J}=0
\end{array}
$$

- Energy density and Poynting vector:

$$
u=\frac{1}{2}(\vec{D} \cdot \vec{E}+\vec{H} \cdot \vec{B}), \quad \vec{S}=\vec{E} \times \vec{H}
$$

VECTOR CALCULUS FORMULAE

1. Cartesian coordinates (x, y, z) with constant unit direction vectors $\hat{e}_{x}, \hat{e}_{y}, \hat{e}_{z}$

- position vector: $\vec{r}=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}$
- line element: $\mathrm{d} \vec{r}=\mathrm{d} x \hat{e}_{x}+\mathrm{d} y \hat{e}_{y}+\mathrm{d} z \hat{e}_{z}$
surface element: $\mathrm{d} \vec{\sigma}=\mathrm{d} y \mathrm{~d} z \hat{e}_{x}+\mathrm{d} x \mathrm{~d} z \hat{e}_{y}+\mathrm{d} x \mathrm{~d} y \hat{e}_{z}$
volume element: $\mathrm{d}^{3} \vec{r}=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$
- gradient of a scalar field $f(x, y, z)$:

$$
\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{e}_{x}+\frac{\partial f}{\partial y} \hat{e}_{y}+\frac{\partial f}{\partial z} \hat{e}_{z}
$$

- divergence of a vector field $\vec{A}(x, y, z)=A_{x}(x, y, z) \hat{e}_{x}+A_{y}(x, y, z) \hat{e}_{y}+A_{z}(x, y, z) \hat{e}_{z}$:

$$
\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

- curl of a vector field $\vec{A}(x, y, z)=A_{x}(x, y, z) \hat{e}_{x}+A_{y}(x, y, z) \hat{e}_{y}+A_{z}(x, y, z) \hat{e}_{z}$:

$$
\vec{\nabla} \times \vec{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{e}_{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{e}_{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{e}_{z}
$$

- Laplacian of a scalar field $f(x, y, z)$:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

Page 4 of 6
2. Cylindrical coordinates (r, ϕ, z) with unit direction vectors $\hat{e}_{r}, \hat{e}_{\phi}, \hat{e}_{z}$

- relation to Cartesian coordinates: $x=r \cos \phi, y=r \sin \phi, z$ unchanged
- relation to Cartesian unit vectors:

$$
\left.\begin{array}{c}
\hat{e}_{r}=\cos \phi \hat{e}_{x}+\sin \phi \hat{e}_{y} \\
\hat{e}_{\phi}=-\sin \phi \hat{e}_{x}+\cos \phi \hat{e}_{y}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{l}
\hat{e}_{x}=\cos \phi \hat{e}_{r}-\sin \phi \hat{e}_{\phi} \\
\hat{e}_{y}=\sin \phi \hat{e}_{r}+\cos \phi \hat{e}_{\phi}
\end{array}\right.
$$

with \hat{e}_{z} the same for both systems.

- position vector: $\vec{r}=r \hat{e}_{r}+z \hat{e}_{z}$
- line element: $\mathrm{d} \vec{r}=\mathrm{d} r \hat{e}_{r}+r \mathrm{~d} \phi \hat{e}_{\phi}+\mathrm{d} z \hat{e}_{z}$
surface element: $\mathrm{d} \vec{\sigma}=r \mathrm{~d} \phi \mathrm{~d} z \hat{e}_{r}+\mathrm{d} r \mathrm{~d} z \hat{e}_{\phi}+r \mathrm{~d} r \mathrm{~d} \phi \hat{e}_{z}$
volume element: $\mathrm{d}^{3} \vec{r}=r \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} z$
- gradient of a scalar field $f(r, \phi, z)$:

$$
\vec{\nabla} f=\frac{\partial f}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \phi} \hat{e}_{\phi}+\frac{\partial f}{\partial z} \hat{e}_{z}
$$

- divergence of a vector field $\vec{A}(r, \phi, z)=A_{r}(r, \phi, z) \hat{e}_{r}+A_{\phi}(r, \phi, z) \hat{e}_{\phi}+A_{z}(r, \phi, z) \hat{e}_{z}$:

$$
\vec{\nabla} \cdot \vec{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}
$$

- curl of a vector field $\vec{A}(r, \phi, z)=A_{r}(r, \phi, z) \hat{e}_{r}+A_{\phi}(r, \phi, z) \hat{e}_{\phi}+A_{z}(r, \phi, z) \hat{e}_{z}$:

$$
\vec{\nabla} \times \vec{A}=\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{e}_{r}+\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right) \hat{e}_{\phi}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\phi}\right)-\frac{\partial A_{r}}{\partial \phi}\right) \hat{e}_{z}
$$

- Laplacian of a scalar field $f(r, \phi, z)$:

$$
\nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

3. Spherical coordinates (r, θ, ϕ) with unit direction vectors $\hat{e}_{r}, \hat{e}_{\theta}, \hat{e}_{\phi}$

- relation to Cartesian coordinates: $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$
- relation to Cartesian unit vectors:

$$
\left.\begin{array}{r}
\hat{e}_{r}=\sin \theta \cos \phi \hat{e}_{x}+\sin \theta \sin \phi \hat{e}_{y}+\cos \theta \hat{e}_{z} \\
\hat{e}_{\theta}=\cos \theta \cos \phi \hat{e}_{x}+\cos \theta \sin \phi \hat{e}_{y}-\sin \theta \hat{e}_{z} \\
\hat{e}_{\phi}=-\sin \phi \hat{e}_{x}+\cos \phi \hat{e}_{y}
\end{array}\right\}
$$

- position vector: $\vec{r}=r \hat{e}_{r}$
- line element: $\mathrm{d} \vec{r}=\mathrm{d} r \hat{e}_{r}+r \mathrm{~d} \theta \hat{e}_{\theta}+r \sin \theta \mathrm{~d} \phi \hat{e}_{\phi}$
surface element: $\mathrm{d} \vec{\sigma}=r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \hat{e}_{r}+r \sin \theta \mathrm{~d} r \mathrm{~d} \phi \hat{e}_{\theta}+r \mathrm{~d} r \mathrm{~d} \theta \hat{e}_{\phi}$ volume element: $\mathrm{d}^{3} \vec{r}=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi$
- gradient of a scalar field $f(r, \theta, \phi)$:

$$
\vec{\nabla} f=\frac{\partial f}{\partial r} \hat{e}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{e}_{\phi}
$$

- divergence of a vector field $\vec{A}(r, \theta, \phi)=A_{r}(r, \theta, \phi) \hat{e}_{r}+A_{\theta}(r, \theta, \phi) \hat{e}_{\theta}+A_{\phi}(r, \theta, \phi) \hat{e}_{\phi}$:

$$
\vec{\nabla} \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}
$$

- curl of a vector field $\vec{A}(r, \theta, \phi)=A_{r}(r, \theta, \phi) \hat{e}_{r}+A_{\theta}(r, \theta, \phi) \hat{e}_{\theta}+A_{\phi}(r, \theta, \phi) \hat{e}_{\phi}$:

$$
\begin{aligned}
\vec{\nabla} \times \vec{A}= & \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial A_{\theta}}{\partial \phi}\right) \hat{e}_{r}+\left(\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}\right)\right) \hat{e}_{\theta} \\
& +\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right) \hat{e}_{\phi}
\end{aligned}
$$

- Laplacian of a scalar field $f(r, \theta, \phi)$:

$$
\nabla^{2} f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}
$$

