
MP465 – Advanced Electromagnetism

Lectures 23 & 24 (6 May 2020)

C. The Field Strength Tensor and Transformation Law
for the Electromagnetic Field

Last time, we realised that the scalar and vector potentials can be put
together into a 4-vector Aµ as A0 = Φ/c, A1,2,3 = Ax,y,z. However, the electric
and magnetic fields are six objects and it’s probably not obvious how these
can be put into a relativistic context. However, if we write these fields in
terms of the components of the 4-potential, maybe we can get an idea of how
to proceed.

We look first at the x-component of the electric field: it’s

Ex = −∂Φ

∂x
− ∂Ax

∂t

so if we write the potentials and derivatives in terms of the components of
Aµ and ∂µ, we get

Ex = − (∂1)
(
cA0
)
− (c∂0)

(
A1
)

= c (∂1A0 − ∂0A1) .

Recall that, because of the metric we’re using, any time we change the
position of a time (0) index we pick up a factor of -1, and when we change
the position of a spacial (1,2 or 3) index, the sign doesn’t change. That’s
why we have A0 = −A0 and A1 = A1 in the above. If we do the same for the
y- and z-components of ~E, virtually identical calculations give

Ey = c (∂2A0 − ∂0A2) , Ez = c (∂3A0 − ∂0A3) .

Now for the magnetic field: the x-component is

Bx =
∂Az
∂y
− ∂Ay

∂z

= (∂2)
(
A3
)
− (∂3)

(
A2
)

= ∂2A3 − ∂3A3

and similar calculations give the other two components as

By = ∂3A1 − ∂1A3, Bz = ∂1A2 − ∂2A1.
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And now we see a pattern emerging: the electric and magnetic fields are
given by antisymmetric combinations of derivatives acting on potentials. This
suggests the definition of a new quantity, called the field strength tensor
(sometimes just “field strength” for brevity), as

Fµν = ∂µAν − ∂νAµ.

Note that this is antisymmetric under interchange of the two indices, so we
have Fνµ = −Fµν and thus F00 = F11 = F22 = F33 = 0. Therefore, there
are only six independent components, which is precisely what we need to
accommodate the electric and magnetic fields:

F01 = −F10 = −Ex/c, F02 = −F20 = −Ey/c, F03 = −F30 = −Ez/c,
F12 = −F21 = Bz, F23 = −F32 = −Bx, F31 = −F13 = By.

For purposes of brevity and calculation, it’s standard to think these as the
components of an antisymmetric 4× 4 matrix:

Fµν =


F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33



=


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 .

We can, of course, use the usual rules of index manipulation to raise one or
both indices of this. For example F 11 = F1

1 = F11 = 0, F 03 = F 0
3 = −F03 =

Ez/c and F 12 = F1
2 = F12 = Bz. The field strength with two upper indices,

F µν = ∂µAν − ∂νAµ, is therefore

F µν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .

We also see a very nice way to express the gauge invariance of these fields:
recall that we showed that if Φ and ~A lead to the fields ~E and ~B, then so
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do Φ − ∂χ/∂t and ~A + ~∇χ. This is gauge invariance, and is what allows
flexibility in our choice of potentials. Now, notice that

Φ− ∂χ

∂t
= cA0 − c∂0χ

= c(A0 + ∂0χ),

( ~A+ ~∇χ)x = A1 + ∂1χ

= A1 + ∂1χ

and similarly for the y- and z-components of ~A+ ~∇χ. So we see that a gauge
transformation may be written in 4-vector notation as Aµ 7→ Aµ + ∂µχ.

When we compute the field strength tensor using this transformed po-
tential, we get

∂µ (Aν + ∂νχ)− ∂ν (Aµ + ∂µχ) = ∂µAν − ∂νAµ + ∂µ∂νχ− ∂ν∂µχ
= F µν

because partial derivatives can be done in any order and thus the final two
terms cancel. Since F doesn’t change under this transformation, its compo-
nents – the electric and magnetic fields – are also the same and thus gauge
invariance holds.

Now, we’re in a position to see how the electric and magnetic fields change
between inertial frames, but an important comment: these are not Lorentz
transformations. A Lorentz transformation is only for 4-vectors, and the
electric and magnetic fields are not 4-vectors. However, we can use the field
strength tensor to determine how they do transform.

How? The field strength tensor is explicitly constructed from two 4-
vectors – the derivative and potential 4-vectors – and we know how they
transform, so we also know how the field strength tensor transforms. Specifi-
cally, because anything with an upper index transforms the same way as the
coordinate 4-vector, namely, xµ 7→ x′µ = Λµ

νx
ν , this means the field strength

tensor with two upper indices changes between inertial frames as

F µν 7→ F ′µν = Λµ
αΛν

βF
αβ.

This may look rather formidable, but there’s a way to rewrite it to make the
calculation (somewhat) easier: let F be the 4 × 4 matrix with components
F µν . Now, recall the definition of matrix multiplication: if M and N are two
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n× n matrices, then the matrix MN has components

(MN)ij =
n∑
k=1

MikNkj.

So we see that any time we sum over an index which is the second of one
matrix and the first of another (as k is above), that’s a matrix multiplication.
So in our expression for F ′ above, we see part of it is Λµ

αF
αβ (with an implied

sum over α). Thus, if Λ is the 4×4 matrix giving our Lorentz transformation,
this quantity is (ΛF )µβ. There’s the other Λ though, but we see that Λν

β

is not only the νβ-element of the matrix Λ but also the βν-element of the
transposed matrix ΛT . Thus

(F ′)µν = Λµ
αΛν

βF
αβ

= (ΛF )µβ(ΛT )β
ν

= (ΛFΛT )µν

so with all these matrix definitions, we see F ′ = ΛFΛT . So if F is constructed
from the quantities we measure in an inertial frame S, and Λ is the Lorentz
transformation relating this frame to another inertial frame S ′, then the
elements of F ′ give the electric and magnetic fields in S ′.

To see how this works in a specific example, consider a boost in the
positive x-direction. We know that the appropriate 4 × 4 matrix giving the
Lorentz transformation is

Λ =


γ(v) −γ(v)v

c
0 0

−γ(v)v
c

γ(v) 0 0
0 0 1 0
0 0 0 1

 .

As we said, F is the upper-index version of the field strength tensor, namely,

F =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 .

Conputing ΛFΛT is a bit on the tedious side, but we can do it, and the result
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is

F ′ = ΛFΛT

=


0 Ex/c

γ(v)
c

(Ey − vBz)
γ(v)
c

(Ez + vBy)
−Ex/c 0 γ(v)(Bz − vEy/c2) −γ(v)(By + vEz/c

2)

−γ(v)
c

(Ey − vBz) −γ(v)(Bz − vEy/c2) 0 Bx

−γ(v)
c

(Ez + vBy) γ(v)(By + vEz/c
2) −Bx 0

 .

(Note this is antisymmetric, as expected.)
Now we can read off the transformed fields: the 01 component of F ′

is F ′01, which is E ′
x/c, and thus we see E ′

x = Ex: the component of the
electric field in the direction of the boost is unchanged. Looking at the 23
component says the same is true for the magnetic field: B′

x = Bx. (This
is already different from a Lorentz transformation, where it’s the spacial
components perpendicular to a boost which don’t change.) If we look at
the 21 component, this is −B′

z and we see B′
z = γ(v)(Bz − vEy/c

2). And
so on. So, writing everything out, we see the transformation rules for the
electromagnetic field for a boost in the positive x-direction are

E ′
x = Ex, B′

x = Bx,

E ′
y = γ(v) (Ey − vBz) , B′

y = γ(v)
(
By +

v

c2
Ez

)
,

E ′
z = γ(v) (Ez + vBy) , B′

z = γ(v)
(
Bz −

v

c2
Ey

)
.

Showing the general case is eminently doable but a bit lengthy, so we
don’t do it here and just state the result: if ~E and ~B are the fields in an
inertial frame S, and S ′ moves at a constant velocity ~v relative to S, then
the fields in S ′ are given by

E ′
‖ = E‖, ~E ′

⊥ = γ(v)
(
~E⊥ + ~v × ~B

)
,

B′
‖ = B‖, ~B′

⊥ = γ(v)
(
~B⊥ − ~v × ~E

)
,

where a ‖ subscript indicates the component in the same direction as ~v and
⊥ denotes the two components perpendicular to the velocity. (So, for the
example we did, the velocity is ~v = vêx and thus the x-component is the
parallel one and the y- and z-components are the perpendicular ones.)

Also note that since crossing a field with ~v will eliminate the component
parallel to ~v, ~v× ~E = ~v× ~E⊥ and ~v× ~B = ~v× ~B⊥ and thus the transformations

5



of the parallel and perpendicular components are entirely independent of each
other.

These laws are useful in general, but they now can be used to show exactly
why a moving charge creates a magnetic field, and we’ll now do that. So
suppose we start with a point charge which moves with a constant velocity
in an inertial frame S (which we’ll call the “lab frame” since it’s where
we’re measuring our fields). Without loss of generality, define the positive
x-direction of a Cartesian coordinate system to be the same as the velocity,
so ~v = vêx. We now ask, what is the electromagnetic field in this frame?

We could, naturally, compute ~E and ~B using all of the formulae we’ve
derived over the semester, but we don’t have to if we think of what’s going
on in the charge’s rest frame. So let S ′ be the frame in which the charge is at
rest; for this to be the case, the rest frame is moving with velocity ~v relative
to the lab frame, and so we know the fields are related by

E ′
x = Ex, B′

x = Bx,

E ′
y = γ(v) (Ey − vBz) , B′

y = γ(v)
(
By +

v

c2
Ez

)
,

E ′
z = γ(v) (Ez + vBy) , B′

z = γ(v)
(
Bz −

v

c2
Ey

)
.

However, from the rest frame’s point of view, it sees the primed fields and
says the lab frame is moving at velocity −vêx, so the inverse transformations
are obtained simply by swapping the primed and unprimed quantities and
changing the sign of v:

Ex = E ′
x, Bx = B′

x,

Ey = γ(v)
(
E ′
y + vB′

z

)
, By = γ(v)

(
B′
y −

v

c2
E ′
z

)
,

Ez = γ(v)
(
E ′
z − vB′

y

)
, Bz = γ(v)

(
B′
z +

v

c2
E ′
y

)
.

(Remember that γ(v) is an even function of v, so γ(−v) = γ(v).) In the rest
frame, we have only a single, unmoving particle at the origin, and since there
are no moving changes, there is no magnetic field, so B′

x = B′
y = B′

z = 0.
Furthermore, we also know the electric field from Coulomb’s law, but we
must be sure to express it in the primed spacetime coordinates:

~E ′(t′, ~r ′) =
q

4πεo

~r ′

|~r ′|3
,

6



or

E ′
x(t

′, x′, y′, x′) =
q

4πε0

x′

[(x′)2 + (y′)2 + (z′)2]3/2
,

E ′
y(t

′, x′, y′, x′) =
q

4πε0

y′

[(x′)2 + (y′)2 + (z′)2]3/2
,

E ′
z(t

′, x′, y′, x′) =
q

4πε0

z′

[(x′)2 + (y′)2 + (z′)2]3/2
.

We can now use the above inverse transformations to get the fields in the lab
frame, but we also need to express the spacetime coordinates in this frame
as well, i.e.

t′ = γ(v)
(
t− v

c2
x
)
, x′ = γ(v) (x− vt) ,

y′ = y, z′ = z

and all this together gives the electric field components as

Ex(t, x, y, z) = E ′
x(t

′, x′, y′, z′)

=
γ(v)q

4πε0

x− vt
[γ2(v)(x− vt)2 + y2 + z2]3/2

,

Ey(t, x, y, z) = γ(v)E ′
y(t

′, x′, y′, z′)

=
γ(v)q

4πε0

y

[γ2(v)(x− vt)2 + y2 + z2]3/2
,

Ez(t, x, y, z) = γ(v)E ′
z(t

′, x′, y′, z′)

=
γ(v)q

4πε0

z

[γ2(v)(x− vt)2 + y2 + z2]3/2
.

The appearance of the x − vt here makes perfect sense, since the particle’s
moving with speed v in the positive x-direction. However, it’s worth noting
that this is not radially symmetric. The γ2(v) multiplying the (x−vt)2 in the
denominator has the effect of “squashing” the electric field in the direction of
motion: if we pick a t and centre a sphere around the charge, the magnitude
of ~E declines as you move along the sphere’s surface toward the two poles
where the sphere intersects the z-axis.

Now, the magnetic field was zero in the rest frame, but it’s decidedly not
zero in the lab frame. Well, okay, the x-component is (because Bx = B′

x = 0),
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but the other two components are

By(t, x, y, z) = −γ(v)v

c2
E ′
z(t

′, x′, y′, z′)

= −µ0γ(v)qv

4π

z

[γ2(v)(x− vt)2 + y2 + z2]3/2
,

Bz(t, x, y, z) =
γ(v)v

c2
E ′
y(t

′, x′, y′, z′)

=
µ0γ(v)qv

4π

y

[γ2(v)(x− vt)2 + y2 + z2]3/2

(where we’ve used c2ε0 = 1/µ0 for the umpteenth time). Notice that this

makes ~B proportional to −zêy + yêz, which points around the x-axis (in the
same way êφ points around the z-axis in cylindrical and spherical coordi-
nates), and this is what we expect. If you take your right hand and point
your thumb in the direction of the charge’s motion, the magnetic fields wraps
around this axis in the same directions as your finger do. And since a current
is just a whole collection of moving point charges, this explains the direction
of the magnetic field we find in the Biot-Savart law. So the creation of a
magnetic field when you have a current is, in essence, a result of special
relativity.

D. The Relativistic Form of Maxwell’s Equations
Now that we have a way of incorporating the electromagnetic field into

an inherently relativistic quantity (the field strength tensor), we can return
to Maxwell’s equations. Let’s take the same approach as we did in finding
the field strength tensor, by writing eveything in the equations in terms of
4-vectors and tensors.

We start with Gauss’ law for electricity, ~∇ · ~E = ρ/ε0.Writing it out in
full and using the 4-derivative, 4-current and field strength gives

~∇ · ~E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= (∂1)
(
−cF 10

)
+ (∂2)

(
−cF 20

)
+ (∂3)

(
−cF 30

)
=

J0/c

ε0

or, using c2 = 1/µ0ε0 yet again, ∂1F
10 + ∂2F

20 + ∂3F
30 = −µ0J

0. Note the
left-hand side is summed only over the spacial coordinates, and therefore
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isn’t automatically ∂µF
µ0. However, recall that F 00 = 0, so we can add

∂0F
00 to it without changing the right-hand side, in which case we end up

with ∂µF
µ0 = −µ0J

0.
Now let’s look at the other equation with a source in it, Ampère’s law.

The x-component is(
~∇× ~B

)
x

=
∂Bz

∂y
− ∂By

∂z

= (∂2)
(
−F 21

)
− (∂3)

(
F 31
)

= −(∂2F
21 + ∂3F

31)

= µ0Jx + µ0ε0
∂Ex
∂t

= µ0(J
1) +

1

c2
(c∂0)

(
cF 01

)
= µ0J

1 + ∂0F
01.

If we put all the field strength parts on the same side, this may be rewritten
as ∂0F

01 + ∂2F
20 + ∂3F

31 = −µ0J
1. If we do the same sort of stuff with the

y- and z-components of Ampère’s law, we find, respectively, ∂0F
02 +∂1F

12 +
∂3F

32 = −µ0J
2 and ∂0F

03 + ∂1F
13 + ∂2F

23 = −µ0J
3. But since F 11 = 0,

we can add ∂1F
11 to the left-hand side of the x-component equation to get

∂0F
01 +∂1F

11 +∂2F
20 +∂3F

31 = ∂µF
µ1 = −µ0J

1. F 22 and F 33 are also zero,
so adding ∂2F

22 and ∂3F
33 to, respectively, the left-hand sides ofthe y- and

z-component equations will give ∂µF
µ2 = −µ0J

2 and ∂µF
µ3 = −µ0J

3.
And we have what we’re after, because we see that these four equations

may now be written in a single form:

∂µF
µν = −µ0J

ν .

Because the index µ is summed over, a Lorentz transformation only sees the
free index ν on the left-hand side and so ∂µF

µν will transform as a 4-vector,
and the above equation says that it’s specifically the 4-vector −µ0J

ν . Thus,
if we have this equation in a frame S and transform to a new frame S ′, this
becomes ∂′µF

′µν = −µ0J
′ν ; the equation has the same form in terms of all

the quantities you measure in S ′ as it did in terms of the quantities in S ′.

So this takes care of the Maxwell equations involving sources, but there
are four others: Gauss’ law for magnetism (a single scalar equation) and
Faraday’s law of induction (a three-component vector equation). The fact
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that there are four of these as well is promising, since we hope to get a 4-vector
equation like we did above. So let’s start with Gauss’ law for magnetism:

~∇ · ~B =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

= ∂1F
23 + ∂2F

31 + ∂3F
12

= 0.

This is different that what we had before; in all the source equations, the
index on the derivative always showed up as one of the field strength indices
as well (e.g. ∂1F

10). Here we see that none the indices are shared in any
of the three terms. We see that same thing happens in Faraday’s law: the
x-component gives (

~∇× ~E
)
x

=
∂Ez
∂y
− ∂Ey

∂z

= ∂2(cF
03)− ∂3(−cF 20)

= c(∂2F
03 + ∂3F

20)

= −∂Bx

∂t
= −c∂0F 23

or ∂0F
23 + ∂2F

03 + ∂3F
20 = 0. The y- and z-components will similarly give

∂0F
13 + ∂1F

30 + ∂3F
01 = 0 and ∂0F

12 + ∂1F
02 + ∂2F

10 = 0.
These equations may look utterly baffling, but the next step is somewhat

clearer if we write eveything in terms of the field strength tensor with two
lowered indices, e.g. F 23 = F23, F

30 = −F30 = F03 and so on. Doing this
renders the four equations as

∂1F23 + ∂2F31 + ∂3F12 = 0,

∂0F23 + ∂2F32 + ∂3F02 = 0,

∂0F13 + ∂1F03 + ∂3F10 = 0,

∂0F12 + ∂1F20 + ∂2F01 = 0.

Notice that there’s no 0 index in the first equation, and each term contains a
1, 2 and 3 index. There’s no 1 in the second equation, but 0, 2 and 3 appear.
In the third, no 2 but a 0, 1 and 3 and finally, no 3 but a 0, 1 and 2.

We’ve seen something like this before: the x-component of ~a×~b contains
only y- and z-components, etc. And this is because of the Levi-Civita symbol:
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∑
j,k εijkajbk means that whatever value i has will be skipped in the sum

because εijk = 0 if any two indices are the same. So is there something like
a cross-product involved in these four equations we’ve derived?

Yes, there is. We now extend our definition of the usual Levi-Civita
symbol to the 4-dimensional Levi-Civita tensor, defined very similarly:

εµνλρ =


+1 if (µνλρ) is an even permutation of (0123)
−1 if (µνλρ) is an odd permutation of (0123)

0 if any two indices are the same

This is an invariant tensor: the four upper indices means that it transforms
appropriately, namely,

εµνλρ 7→ Λµ
αΛν

βΛλ
γΛ

ρ
δε
αβγδ.

The 4-dimensional ε has the same relation with 4 × 4 matrices as the 3-
dimensional ε has with 3×3 matrices, namely, the above is (det Λ)εµνλρ. But
all proper Lorentz transformations have determinant 1, so this means εµνλρ

is the same in all inertial frames, which is why it can be consistently defined
as above.

Where it comes into Maxwell’s equations is through a new object, called
the dual field strength tensor, denoted ?F (some texts use F̃ ) and defined as

?F µν =
1

2
εµνλρFλρ.

Thus, its components are the components of F but in a different order.
However, even with no further computation, we can see one property of ?F :
it’s antisymmetric, because swapping µν in the Levi-Civita tensor changes
its sign.

Now to compute one of its components, ?F 01: to find this, we need
ε01λρFλρ, summed over all λ and ρ from 0 to 3. But since 0 and 1 already
appear in the ε, we get a zero if λ or ρ takes on either of these values. Fur-
thermore, if λ are ρ are the same, we’ll get a zero. Thus, even though there
are sixteen terms in the full sum ε01λρFλρ, only two survive, the ones where
(λρ) is (23) or (32): ε01λρFλρ = ε0123F23 + ε0132F32. (0123) is quite obviously
an even permutation of (0123) and since (0132) is obtained from (0123) by a
single swap (of 2 and 3), it’s an odd permutation. Furthermore, F32 = −F23,
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so we see

?F 01 =
1

2
ε01λρFλρ

=
1

2
[(+1)(F23) + (−1)(−F23)]

= F23.

Similar computations give the other five independent components, and we
get the following:

?F 01 = − ? F 10 = F23 = −F32 = Bx,

?F 02 = − ? F 20 = F31 = −F13 = By,

?F 03 = − ? F 10 = F12 = −F21 = Bz,

?F 12 = − ? F 21 = F03 = −F30 = −Ez/c,
?F 23 = − ? F 32 = F01 = −F10 = −Ex/c,
?F 13 = − ? F 31 = F20 = −F02 = Ey/c,

and ?F 00 = ?F 11 = ?F 22 = ?F 33 = 0.
Like the field strength tensor, we can think of this as a 4× 4 matrix, and

written this way, we get

?F µν =


0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0

 .

(We see that this matrix is F µν with the replacements ~E → c ~B and ~B →
− ~E/c; this is an example of what’s called a duality transformation, which is
why the term “dual field strength tensor” is used.)

To see why this is exactly the object we need, let’s rewrite Gauss’ law for
magnetism using the dual field strength tensor

~∇ · ~B =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

= ∂1(− ? F 10) + ∂2(− ? F 20) + ∂3(− ? F 30)

= 0

and now we see a repeated index in each term. Since ?F 00 = 0, we can add
zero to the above in the form of −∂0 ? F 00, and we get ∂µ ? F

µ0 = 0. And
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it will probably come as no surprise at this point that the other three are
equivalent to ∂µ ? F

µ1 = 0, ∂µ ? F
µ2 = 0 and ∂µ ? F

µ3 = 0, and thus we can
finally write all of Maxwell’s equations in their relativistic form:

∂µF
µν = −µ0J

ν , ∂µ ? F
µν = 0.

Let’s now see what happens when we express these in terms of the po-
tentials. Let’s look at the one involving the dual field strength first: we
see

∂µ ? F
µν = ∂µ

[
1

2
εµνλρ (∂λAρ − ∂ρAλ)

]
=

1

2
εµνλρ∂µ∂λAρ −

1

2
εµνλρ∂µ∂ρAλ.

The Levi-Civita tensor is antisymmetric in all its indices, but ∂µ∂λ and ∂µ∂ρ
are symmetric in their indices due to the commutation of partial derivatives.
And whenever you sum a symmetric pair of indices with an antisymmetric
pair, you get zero, and thus ∂ ? F µν = 0 is automatically satisfied. But
this is just the relativistic version of the motivation for the potentials: by
introducing them, the source-free Maxwell equations are immediately solved.
(As a teaser for those of you who may go on to study higher-level differential
geometry, this is an application of what’s called the Poincaré lemma. The
? I use for the dual field strength also comes from differential geometry as
well.)

Now for the equation with the 4-current in it: putting in the potentials
gives

∂µF
µν = ∂µ (∂µAν − ∂νAµ)

= ∂µ∂
µAν − ∂µ∂νAµ

= −µ0J
ν .

∂µ∂
µ = �, the d’Alembertian. And we can swap the order of the partial

derivatives in the second term to get

�Aν − ∂ν (∂µA
µ) = −µ0J

ν .

Notice the ∂µA
µ; this is a kind of “4-divergence”, and in principle can be

anything, making the above the most general differential equation giving
the 4-potential. However, we know that gauge invariance allows us to pick
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potentials which have particularly convenient properties, and we can use it
to require them to satisfy the Lorentz gauge, which as we showed a couple
of lectures ago is ∂µA

µ = 0, which gives �Aν = −µ0J
ν , the form we used in

finding our time-dependent fields.

E. The Lorentz Force Law
Recall that in the very first lecture, we stated precisely all the basic

building blocks we need to study electromagnetism, and it seems that we’ve
got everything: the continuity equation in the form ∂µJ

µ = 0 and Maxwell’s
equations ∂µF

µν = −µ0J
ν and ∂µ ? F

µν = 0. But in a very nice way of
bookending the module, we now finish with the one law we haven’t yet put
in relativistic form, the Lorentz force law.

But unlike the other equations, which were already relativistically-covariant
(although it wasn’t obvious in the original vector calculus notation), the
Lorentz force law isn’t. In other words, the formula

m
d~u

dt
= q ~E + q~u× ~B

isn’t actually correct, but is the nonrelativistic approximation of the correct
law. To see this isn’t hard: we know experimentally that a magnetic field
causes a charge to feel a force only if it has a nonzero velocity ~u. In relativity,
the velocity of a particle is described properly by the velocity 4-vector Uµ

which has components U0 = γ(u)c and U1,2,3 = γ(u)ux,y,z, where we must
keep in mind that ~u is dependent on the spacetime coordinates of the inertial
frame we’re in. Thus, any relativistic formulation of the force law has to use
the 4-vector U and not just the 3-velocity ~u.

However, there’s already a big hint of what we need to do: pick the x-
component of the force law above and reexpress it in terms of the 4-velocity
and field strength:

m
dux
dt

= m
d

dt

(
U1

γ(u)

)
= qEx + q(~u× ~B)x

= q

(
Ex
c
c+Bzuy −Byuz

)
= q

(
−F 10 U

0

γ(u)
+ F 12 U

2

γ(u)
+ F 13 U

3

γ(u)

)
=

q

γ(u)

(
F 10U0 + F 11U1 + F 12U2 + F 13U3

)
14



because F 11 = 0. And we see a contracted index appearing rather nicely:
F 10U0 + F 11U1 + F 12U2 + F 13U3 = F 1νUν . The index 1 showing up for the
x-component is also incredibly suggestive, and finding that the index is 2 for
the y-component and 3 for the z-component only hammers the point home.

There are γ-factors here and these can only show up when we’ve chosen
a specific reference frame and can’t appear explicitly in any general 4-vector
expression. However, in the nonrelativistic limit, γ is near 1 and so the
x-component becomes

m
dU1

dt
≈ qF 1νUν

and similarly for the y- and z-components. This is starting to look like our
other equations and we might be tempted to propose mdUµ/dt = qF µνUν
as the correct version of the force law, but this can’t be correct because
t is specific to our coordinate system: it’s the time in our chosen reference
frame, and thus would change in a different frame and the proposed equation
wouldn’t transform as a 4-vector.

So we need a Lorentz-invariant analogue of the time, and we of course
have one, the proper time τ defined via dτ 2 = −ds2/c2 (which is dt2−|d~r|2/c2
if we pick a reference frame). Again, if all velocities in our reference frame
are much less than c, There’s virtually no difference between τ and t and so
dux/dt ≈ dU1/dτ . Therefore, since it has the Lorentz force law we’ve been
using as its nonrelativistic limit, we propose that

m
dUµ

dτ
= qF µνUν

is the correct 4-vector version of the law, and it is indeed correct. Thus, any
analysis of the kinematics of a charged particle in an EM field has to use
this law rather than the nonrelativistic approximation if it’s to accurately
describe the particle’s motion.

But this “Lorentz 4-force law” also incorporates something else that we
didn’t talk about: we motivated this by looking at a 3-vector equation, but
we’ve proposed a 4-vector law: what’s the time component of this telling us?
If we pick µ = 0 in the above we get

dU0

dτ
= qF 0νUν
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or

dU0

dτ
= m

d

dτ
γ(u)c

= q
(
F 00U0 + F 01U1 + F 02U2 + F 03U3

)
=

qγ(u)

c
(Exux + Eyuy + Ezuz)

or, since E = mγ(u)c2 is the particle’s energy, a bit of rearrangement gives

dE
dτ

= qγ(u) ~E · ~u

which tells us how the EM field changes the energy of the charge, and it
agrees entirely with what we’d expect in the nonrelativistic limit: we know
that if a particle with velocity ~u moves within a force field ~f (we’ll use a small
f to avoid confusion with the field strength), the rate at which the field does

work on the object is ~f · ~u, and is thus the rate at which the object’s energy
changes. In the nonrelativistic limit, ~f ≈ q( ~E+~u× ~B), and since the second

term is normal to the velocity, ~f · ~u ≈ q ~E · ~u, exactly the limit of the zeroth
component of our Lorentz 4-force law.
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