
MP465 – Advanced Electromagnetism

Lectures 21 & 22 (30 April 2020)

2. The Far-Zone Approximation
We finished the previous lecture talking about the near-zone approxima-

tion where L � r � λ. I did a quick calculation which showed that the
power carried away by the EM wave falls as 1/r3 and thus would seem to
indicate that as r increases, the power gets smaller and smaller.

But this may not actually be true, because as r increases, at some point
it will cease to be much smaller than the wavelength λ and the near-zone
approximation no longer applies. In fact, if we get far enough away, r will
actually eventually become much greater than λ, and this region, where r is
taken to be much larger than both L and λ, is the one where the far-zone
aproximation holds.

So how does this change the situation? Recall that, under the assumption
r � L, we found the leading order term in the magnetic field was

~̃B ≈ µ0

4π
(ι̇kr − 1)

(
ι̇ω~̃p0 × ~r eι̇kr

r3

)
.

The near-zone approximation is kr � 1 and so we took ι̇kr − 1 ≈ −1, but
in the far-zone approximation, kr � 1 and so ι̇kr − 1 ≈ ι̇kr, and thus the
magnetic field is approximately

~̃B ≈ µ0

4π
(ι̇kr)

(
ι̇ω~̃p0 × ~r eι̇kr

r3

)

=
µ0ω

2

4πc

(
~r × ~̃p0
r2

)
eι̇kr.

The electric field amplitude is obtained via

~̃E =
ι̇c2

ω
~∇× ~̃B.
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Note that

~∇×

[(
~r × ~̃p0
r2

)
eι̇kr

]
=

[
~∇×

(
~r × ~̃p0
r2

)]
eι̇kr −

(
~r × ~̃p0
r2

)
×
(
~∇eι̇kr

)
=

[
~∇×

(
~r × ~̃p0
r2

)
−

(
~r × ~̃p0
r2

)
× ι̇kêr

]
eι̇kr.

k is large in the far-zone approximation, so the second term above is much
larger than the first, and so

~̃E ≈ ι̇c2

ω
~∇×

[
µ0ω

2

4πc

(
~r × ~̃p0
r2

)
eι̇kr

]

≈ ι̇c2

ω

µ0ω
2

4πc

[
−

(
~r × ~̃p0
r2

)
× ι̇kêreι̇kr

]

=
c ~̃B × ~r
r

so if we put back in the time dependence, we find the actual real magnetic
field in the far-zone approximation is

~B(t, ~r) ≈ Re

[
µ0ω

2

4πc

(
~r × ~̃p0
r2

)
eι̇(kr−ωt)

]

with the electric field given by ~E(t, ~r) ≈ c ~B(t, ~r)× êr.
Notice now that both fields go as 1/r, so the Poynting vector will go

as 1/r2. As we discussed before, the surface area element on a sphere of

radius r goes as r2, so the power that radiates though this element, ~S ·d~σ, is
imdependent of r! In other words, no matter how large the sphere, a nonzero
amount of power can be transmitted through it. This is the basic reason why
we can communicate information via EM waves and explains why radio and
television transmission (and related notions like radioastronomy) are actually
possible.

Let’s do a bit of quick numerical analysis: as I write this, I’m listening
to the news on RTÉ Radio One at a frequency of 88.9 MHz. This gives a
wavelength of λ = 3.3 metres. Now, that big huge antenna at RTÉ down in
Dublin 4 is, say, L ≈ 50 metres tall. (I tried looking up the actual height
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online, but couldn’t find it, so that’s purely a guess). We see from this that
since L > λ, there actually is no near-zone approximation possible, but the
far-zone applies provided r is much larger than 50 metres. Now a kilometre
is only 20 times larger than this, but let’s call that “much larger” and so we
expect that the approximation we’ve just derived applies for anything over a
kilometre away. And that’s why I can hear Brian Jennings deliver the latest
pandemic news while sitting at my table.

That’s the basic idea, but let’s do some mathematical calculations to
get an actual expressions for the transmitted power. Now, using the same
reasoning as we used when looking at plane waves, for rapidly oscillating
systems the power we measure is actually the time-averaged power given by
dP̄ = 〈~S〉 · d~σ. We know that if our electric and magnetic fields have the
form

~E = Re
[
~̃Ee−ι̇ωt

]
, ~B = Re

[
~̃Be−ι̇ωt

]
then the time-averaged Poynting vector will be

〈~S〉 =
1

2µ0

~̃E × ~̃B∗.

We have both ~̃E(~r) and ~̃B(~r) in the far-zone approximation, so the time-
averaged Poynting vector will be

〈~S〉 ≈ 1

2µ0

(
c ~̃B(~r)× ~r

r

)
× ~̃B∗(~r)

=
c

2µ0r

[(
~̃B(~r) · ~̃B∗(~r)

)
~r −

(
~r · ~̃B∗(~r)

)
~̃B(~r)

]
.

But since ~̃B∗ ∝ ~r × ~̃p ∗0 , it’s perpendicular to ~r, and so we find

〈~S〉 ≈ c

2µ0r
| ~̃B(~r)|2~r

=
c

2µ0

∣∣∣∣∣µ0ω
2

4πc

(
~r × ~̃p0
r2

)
eι̇kr

∣∣∣∣∣
2

êr

=
µ0ω

4

32π2c

|êr × ~̃p0|2

r2
êr.
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(Remember that if ~a is a complex vector, |~a|2 = ~a · ~a∗.) Unsurprisingly,
this points radially outward: energy is being transmitted directly away in all
directions from the oscillating sources.

The surface area element on a sphere of radius r is d~σ = r2dΩ êr, where
dΩ = sin θ dθ dφ is the solid angle subtended by this area element, as shown
below:

Thus, the time-averaged radiated power is

dP̄ = 〈~S〉 · d~σ

=
µ0ω

4

32π2c
|êr × ~̃p0|2dΩ

which we see is indeed independent of r, and so remains nonzero no matter
how far away from the sources we get. From this we define the time-averaged
power distribution function to be the radiated power per solid angle, i.e.

dP̄

dΩ
= 〈~S〉 · d~σ

=
µ0ω

4

32π2c
|êr × ~̃p0|2
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which will, in general, depend on the angular coordinates θ and φ. We would
therefore get the total radiated power by integrating this over the entire
surface of the sphere, namely,

P̄ =

∫
4π

dP̄

dΩ
dΩ

=

∫
dP̄

dΩ
(θ, φ) sin θ dθ dφ

where the integral is over 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

Let’s do an example of how to calculate all of this for a given oscillating
source: suppose we have a vertical wire of height L through which we run
a current I0 cosωt, where I0 is the peak current. If we pick a coordinate
system such that the antenna lies along the z-axis with its lower end at
the origin, then the current density is given in Cartesian coordinates by
~J(t, ~r) = I0 cosωt δ(x)δ(y) êz for 0 ≤ z ≤ L and zero otherwise.

What we want is the complex dipole amplitude ~̃p0, because once we have

that, we can compute eveything we need. The first step is to find the ~̃J(~r)

such that ~J = Re[ ~̃Je−ι̇ωt]. If ~̃J = ~JR + ι̇ ~JI then ~J = ~JR cosωt + ~JI sinωt, so

we see quickly that ~JR = I0δ(x)δ(y)êz and ~JI = ~0 and therefore ~̃J(x, y, z) =
I0δ(x)δ(y)êz for 0 ≤ z ≤ L and zero otherwise.

We derived a formula for getting the dipole amplitude from this:

~̃p0 =
ι̇

ω

∫
~̃J(~r) d3~r

=
ι̇I0êz
ω

∫
δ(x)δ(y) dx dy dz

=
ι̇I0L

ω
êz

because the two delta-functions integrate to 1 and the z-integral is from 0 to
L.

To get the power distribution, we need |êr × ~̃p0|2, which is∣∣∣êr × ~̃p0∣∣∣2 =

∣∣∣∣êr × ( ι̇I0Lω êz

)∣∣∣∣2
=

I20L
2

ω2
|êr × êz|2 .
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Recall that the magnitude of the cross-product of two vectors is the product
of the magnitudes of the vectors times the sine of the angle between them.
êr and êz both have unit magnitude, and the angle between them is, by
definition, the spherical coordinate θ. Thus,∣∣∣êr × ~̃p0∣∣∣2 =

I20L
2

ω2
sin2 θ.

Putting this into the formula for the power distribution gives

dP̄

dΩ
=

µ0I
2
0L

2ω2

32π2c
sin2 θ.

Now, at what values of θ is this maximised? It’s zero at θ = 0 and θ = π,
so very little power is radiated straight up or straight down. sin2 θ = 1 at
θ = π/2, so most of the power is transmitted horizontally, and this explains
why radio and TV antennae are oriented the way they are: since the majority
of receivers (home radios and TVs) are at ground level, you want the signal
to be strongest there. Since this is exactly θ = π/2, the transmitted power
from the above (admittedly very simple) vertically-oriented antenna will be
at its maximum precisely where all the listeners and viewers are.

The total power transmitted will be the integral of the above over all solid
angles, i.e.

P̄ =

∫
dP̄

dΩ
sin θ dθ dφ

=
µ0I

2
0L

2ω2

32π2c

(∫ π

0

sin3 θ dθ

)(∫ 2π

0

dφ

)
=

µ0I
2
0L

2ω2

12πc

so if you were a pirate radio DJ who had a limited amount of transmission
power at your disposal, this formula would give you a rough idea of what
range of frequencies, antenna heights and antenna currents would be available
to you.

Now, virtually everything we’ve done in this section on time-dependent
sources and fields has assumed a very specific time-dependence, namely, sim-
ple harmonic: that’s where the e−ι̇ωt comes from. Although this assumption
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seems restrictive, it’s actually not, and here’s why: keep in mind that any
time-dependent function f(t) may be written as

f(t) =

∫ ∞
−∞

f̃(ω)e−ι̇ωtdω

where (up to some numerical factor) f̃(ω) is the Fourier transform (FT) of
f(t). Thus, if we interpret all of our parameters written with a tilde as
the FTs of the real quantity (i.e. the quantities without tildes), then all the
expressions we’ve computed still hold. Keep in mind, though, that under this
interpretation, the tilded quantities are functions of the frequency as well.
For example, our far-zone approximation for the magnetic field still holds,

but the proper expression is now ~B(t, ~r) =
∫∞
−∞

~̃B(ω,~r)e−ι̇ωtdω with ~̃B(ω,~r)

being the expression we derived, but with ~̃p0 replaced by the FT of ~p(t).
But this gives us a way of reverse-engineering the correct solution: under

the FT interpretation, any factor of ω can only come from ι̇ times a time-
derivative: for example, for the far-zone electric field, the ω2~̃p0 can only come
from −~̈p(t). Thus, the expression we found,

~̃B(~r) ≈ µ0ω
2

4πc

(
~r × ~̃p0
r2

)
eι̇kr

which gives

~B(t, ~r) ≈ Re

[
µ0ω

2

4πc

(
~r × ~̃p0
r2

)
eι̇(kr−ωt)

]
becomes

~B(t, ~r) ≈
∫ ∞
−∞

µ0ω
2

4πc

(
~r × ~̃p(ω)

r2

)
eι̇(kr−ωt)dω

=
µ0

4πc

~r

r2
×
∫ ∞
−∞

ω2~̃p(ω)e−ι̇ω(t−r/c)dω

=
µ0

4πc

~̈p(t− r/c)× êr
r

which is the correct far-zone magnetic field for any type of time-dependence.
(Notice the retarded time t−r/c appearing in this expression!) Similar agru-
ments and formulae hold for the other quantities we’ve derived, so the as-
sumption of single-frequency oscillations is less specific than it seems. Which
is great.

7



V. Relativistic Formulation of Electromagnetism

A. Quick Review of Special Relativity Basics
In our derivation of the Green’s function for the d’Alembertian, we needed

to invoke the notion of causality to get a physically-meaningful solution. We
saw explicitly that the correct function imposed the restriction that informa-
tion about the state of the sources had to come from the past and travelled at
the speed of light. This hints at a deep connection between Maxwell’s equa-
tions and special relativity, and in this final section of the module, that’s
exactly what we’ll be looking at.

In fact, the very foundations were laid in a rather oblique way by the
structure of Maxwell’s equations. When Hendrik Lorentz came up with his
famous tarnsformations, he wasn’t thinking of inertial frames or the equiva-
lence principle. He came up with them because he was looking for the most
general set of linear transformations that left Maxwell’s equations invariant.
The fact that these selfsame transformations explain how 4-vectors change
between inertial frames only came later. But this invariance says that we
should be able to reformulate electromagnetism in terms of special relativity,
so that’s what we’ll start doing right now.

Now, one of the prerequisites for this module is a solid background in spe-
cial relativity, the equivalent of MP352, so I’m going to assume that everyone
knows the fundamentals of Lorentz transformations, 4-vector notation, Ein-
stein summation convention and the like. However, we’ll do a quick review
of the basics and notation now.

The first thing is to specify which metric we’re using. If dxµ is a small
change in the spacetime coordintes, then the resultant invariant length ele-
ment due to this change is

ds2 = −c2dt2 + dx2 + dy2 + dz2

= ηµνdx
µdxν

where η00 = −1, η11 = η22 = η33 = 1 and all other components are zero.
Alternatively, we can think of ηµν – called the “metric tensor”, or simply the
“metric” – as the µthνth-element of the matrix

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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We denote by ηµν the µthνth-element of the matrix η−1, which happens to be
the same as η (but those who’ve had a bit of general relativity know that,
for a curved spacetime, the metric is usually not the same as its inverse).

The set of linear transformations that leave this invariant length element,
well, invariant, are called Lorentz transformations, and can be defined as the
set of 4× 4 matrices Λ which satisfy the relation ΛTηΛ = η. Alternatively, if
Λµ

ν is the µthνth-element of Λ, the defining relation becomes ηαβΛα
µΛβ

ν =
ηµν .

These transformations can be one of two types: 3-dimensional rotations,
which leave the zeroth-component of a 4-vector unchanged, and boosts, which
give the relationship between quantities in different inertial (i.e. nonaccelerat-
ing) frames of reference moving at a constant velocity relative to one another.
For example, suppose a frame S ′ is moving with a constant speed v in the
+x-direction relative to a frame S (a “boost in the positive x-direction”). If
wµ is a 4-vector in S, then its components in S ′ are

w′0 = γ(v)
(
w0 − v

c
w1
)
, w′1 = γ(v)

(
w1 − v

c
w0
)
,

w′2 = w2, w′3 = w3

where γ(v) = (1 − v2/c2)−1/2. In matrix notation, this would be w′ = Λ · w
where wT = (w0, w1, w2, w3) and

Λ =


γ(v) −γ(v)v

c
0 0

−γ(v)v
c

γ(v) 0 0
0 0 1 0
0 0 0 1


or component-wise, w′µ = Λµ

νw
ν . However, this is how a covariant 4-vector

changes, i.e. one with an upper index. We can also have contravariant 4-
vectors, written with a lower index, and these transform according to the
rule w′µ = (Λ−1)νµwν . This means that any quantity of the form wµuµ = w
(the index µ is “contracted”) is a Lorentz-invariant quantity. But the two
types of 4-vectors are related, because you can always use the metric to
transform one into the other type: wµ = ηµνw

ν and wµ = ηµνwν . This allows
us to define the norm-squared of a 4-vector wµ as

w2 = ηµνw
µwν = ηµνwµwν

= wµw
µ = wµwµ

= −(w0)2 + (w1)2 + (w2)2 + (w3)2 = −(w0)
2 + (w1)

2 + (w2)
2 + (w3)

2.
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This can be of any sign: if it’s postive, we call the 4-vector “spacelike”, if it’s
negative, it’s “timelike” and if it’s zero, it’s “null” or “lightlike”.

But an object can have more than one index, and where the indices are
located indicates how it transforms between inetrial frames: for example, if
we denote a quantity in S by Aµν , this means that if Λ is a Lorentz ransfor-
mation taking us to the frame S ′, then this quantity’s value in the primed
frame is

A′µν = Λµ
αΛν

βA
αβ.

Similarly, any object written as Bµ
ν will transform according to the rule

B′µν = Λµ
α(Λ−1)βνB

α
β

and so on.

B. The Current and Potential 4-Vectors
What quantities do we know are 4=vectors? In other words, what sets of

four quantities obey the transformation laws we’ve just discussed? There are
three that you hopefully all know: the coordinate 4-vector xµ, the velocity 4-
vector Uµ and the momentum 4-vector P µ. In other words, the three column
vectors

xµ =


ct
x
y
z

 , Uµ =


γ(u)c
γ(u)ux
γ(u)uy
γ(u)uz

 , P µ =


mγ(u)c
mγ(u)ux
mγ(u)uy
mγ(u)uz


all transform between inertial frames S and S ′ via wµ 7→ w′µ = Λµ

νw
ν . (In

fact, the very definition of a covariant 4-vector is “anything that transforms
the same way the spacetime coordinates do”.) So, for example, if a particle
has momentum ~p and energy E =

√
|~p|2c2 +m2c4 in a frame S, then if

S ′ is moving with velocity vêx relative to S, then the particle’s energy and
momentum in the primed frame is

E ′ = γ(v) (E − vpx) , p′x = γ(v)
(
px −

v

c2
E
)
,

p′y = py, p′z = pz

because P 0 = E/c and P 1,2,3 = px,y,z are the components of a covariant
4-vector.
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But there’s also a paradigmatic contravariant 4-vector, namely, the space-
time derivative ∂/∂xµ, universally shorthanded to ∂µ. So if we have a boost
in the positive x-direction, the transformations of t, x, y and z are known
and a simple application of the chain rule will show that ∂′µ = (Λ−1)νµ∂ν
and thus is a contravariant 4-vector. But this fact immediately begins to
hint at a connection between relativity and electromagnetism: we saw that
the d’Alembertian appeared in our equations for the potentials, and it’s a
Lorentz-invariant quantity. We can see this explicitly:

� = ∇2 − 1

c2
∂2

∂t2

= −
(

∂

∂(ct)

)2

+

(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2

= −(∂0)
2 + (∂1)

2 + (∂2)
2 + (∂3)

2

= ∂µ∂
µ

and because it’s made of a contravariant and covariant vector contracted
together, it’s the same in all inertial frames: �′ = �.

But there are also sources in Maxwell’s equations, and these lead to an-
other 4-vector. We’ll show this for a simple 1-dimensional charge/current
distribution, but the result can be generalised for arbitrary configuration.
Consider a infinitely-long straight wire, at rest in an inertial frams S, with a
uniform linear charge density λ and a constant current I. Now, suppose we
go into a frame S ′ which moves at a constant speed v in the same direction
as the wire’s length (call this the positive x-direction); what are the density
λ′ and current I ′ in this frame?

Pick a point on the wire, say, the origin. If we take a time inteval (t, t+∆t)
in S, the amount of charge which flows through this point is ∆q = I∆t. Now,
look in the primed frame, where the interval is now (t′, t′+∆t′): the wire is not
at rest in this frame, it’s moving at speed v in the negative x-direction. Thus,
the total charge moving through it is not just ∆q in the positive direction,
but an additional charge λ′v∆t′ (since v∆t′ is the length of the wire segment
which passes through the origin) moving in the negative direction; thus, the
total charge moving thriough the origin in this frame is ∆q′ = I∆t− λ′v∆t′,
and this defines the primed current ∆q′ = I ′∆t′. Thus, (I ′ + vλ′)∆t′ = I∆t.
But time dilation gives ∆t′ = γ(v)∆t, so we see that I = γ(v)(I ′ + vλ′).

This was picking a point in space but an interval in time; if we instead
pick a point in time and an interval in space, a similar argument comparing
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the amount of charge between x and x+ ∆x at a time t in S to the amount
between x′ and x′+ ∆x′ at a time t′ in S ′ leads to , after invoking the length
contraction ∆x′ = ∆x/γ(v), λ = γ(v)(λ′ + vI ′/c2). But we want the primed
variables in terms of the unprimed ones, and it’s a simple matter to show
that these are

λ′ = γ(v)
(
λ− v

c2
I
)
, I ′ = γ(v) (I − vλ) .

But note that this means that the two quantities λc and I transform exactly
as the zeroth and first components of a 4-vector under a positive x-boost.

This was a simple 1-dimensional system, but it gives the flavour of the
general result: for any system which has a charge density ρ and a current
density ~J in a frame S, then if S ′ is a frame boosted in the positive x-
direction, the densities in this frame are

ρ′ = γ(v)
(
ρ− v

c2
Jx

)
, J ′x = γ(v) (Jx − vρ) ,

J ′y = Jy, J ′z = Jz

which means that the four quantities J0 = ρc, J1 = Jx, J
2 − Jy and J3 = Jz

are the components of the current 4-vector Jµ (also called the 4-current).
And this leads to another extremely nice result: note that

∂µJ
µ = ∂0J

0 + ∂1J
1 + ∂2J

2 + ∂3J
3

=

(
1

c

∂

∂t

)
ρc+

(
∂

∂x

)
Jx +

(
∂

∂y

)
Jy +

(
∂

∂z

)
Jz

=
∂ρ

∂t
+ ~∇ · ~J

so the continuity equation may be rewritten as ∂µJ
µ = 0. This is an extremely

important result: since it’s a contraction of two 4-vectors, ∂µJ
µ is Lorentz-

invariant. Thus, if it’s zero in one inertial frame, it’s zero in all inertial frames.
But the continuity equation is an expression of conservation of charge, so this
indicates that total electric charge is Lorentz-invariant; a system that has a
total charge q in one frame has the same total charge in all frames. This
is why electric charge is one of the quantities we can assign to fundamental
particles; it’s independent of the inertial frame we choose to measure it in.
The charge of an electron is −e whether it’s at rest or moving at 99.9999999%
of the speed of light.

12



But wait, there’s more! Recall if we bring in the scalar and vector poten-
tials, Maxwell’s equantions lead to

�Φ = − ρ
ε0
, � ~A = −µo ~J

provided the potentials satisfy the Lorentz (note the name!) gauge condition

1

c2
∂Φ

∂t
+ ~∇ · ~A = 0.

Using ε0 = 1/µ0c
2, we can rewrite the above Maxwell equations in column-

vector form as

�


Φ/c
Ax
Ay
Az

 = −µ0


ρc
Jx
Jy
Jz

 .

The right-hand side transforms as a 4-vector (the constant factor −µ0 doesn’t
change that). The d’Alembertian doesn’t change at all under a Lorentz
transformation. Thus, the column vector containing the potentials must
be a 4-vector. This is the potential 4-vector, or 4-potential, Aµ, and its
components are A0 = Φ/c, A1 = Ax, A

2 = Ay and A3 = Az. Therefore, the
equations which give the potentials in terms of the sources is the 4-vector
equation

�Aµ = −µ0J
µ,

Now, the quantity ∂µA
µ is a Lorentz-invariant quantity. But it’s

∂µA
µ =

(
1

c

∂

∂t

)
Φ

c
+

(
∂

∂x

)
Ax +

(
∂

∂y

)
Ay +

(
∂

∂z

)
Az

=
1

c2
∂Φ

∂t
+ ~∇ · ~A.

Note that this isn’t automatically zero. That’s a particular choice for our
potentials. But the above shows that the Lorentz gauge ∂µA

µ = 0 is (duh)
Lorentz-invariant; if the potentials satisfy it in one inertial frame, they satisfy
it in all inertial frames. This is in contrast to the Coloumb gauge ~∇ · ~A = 0,
which is not Lorentz-invariant, so the Lorentz gauge is the most favoured
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gauge choice in situations where relativity plays a significant role (like, for
example, particle physics).

Fine. But the potentials aren’t the physical fields, the electric and mag-
netic fields are. How do they fit into this relativistic formulation? We can see
by a simple counting argument that something different has to happen with
them: we always need to specify four sources (one scalar density and one
three-component vector density), and we get from them four potentials (one
scalar and one vector). As we’ve shown, these collect themselves very nicely

into two 4-vectors. But the two 3-vectors ~E and ~B contain six quantities.
Not a multiple of four, and so it’s not immediately obvious how we could get
something like a 4-vector out of these.

And as it turns out, it’s not a 4-vector that we need, but something called
a 4-tensor, and that’ll be the subject of the next lecture.
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