
MP465 – Advanced Electromagnetism

Lectures 19 & 20 (23 April 2020)

IV. Electromagnetic Radiation

A. Solutions to the Time-Dependent Maxwell Equations
Right, back to the basics: Maxwell’s equations in vacuum are, of course,

~∇ · ~E =
ρ

ε0
, ~∇ · ~B = 0,

~∇× ~E = −∂
~B

∂t
, ~∇× ~B = µ0

~J + µ0ε0
∂ ~E

∂t

and the continuity equation is

∂ρ

∂t
+ ~∇ · ~J = 0.

(If we’re in a linear medium, interpret the sources as the free sources and the
permittivity and permeability as those of the medium.) In the case of a static

system, where there is no time-dependence, then ~E = −~∇Φ and ~B = ~∇× ~A
where the potentials satisfy

∇2Φ = − ρ
ε0
, ∇2 ~A = −µ0

~J

with the choice that the vector potential satisfies the Coloumb gauge ~∇· ~A =
0.

But suppose we don’t assume time-independence. This is, of course, the
more logical choice; virtually nothing in the universe is actually static. In
this case, we need to keep all time derivatives, which means that even though
~B = ~∇ × ~A still holds, the electric field includes a time derivative of the
vector potential: ~E = −~∇Φ−∂ ~A/∂t. These automatically satisfy Gauss’ law
for magnetism and Faraday’s law of induction (the two source-free Maxwell
equations), but Gauss’ law for electricity now becomes

~∇ ·

(
−~∇Φ− ∂ ~A

∂t

)
= −∇2Φ− ∂

∂t
(~∇ · ~A)

=
ρ

ε0
.
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Now, we’re going to add zero to this and rearrange it:

−∇2Φ− ∂

∂t
(~∇ · ~A) = −∇2Φ− ∂

∂t
(~∇ · ~A) +

1

c2

(
∂2Φ

∂t2
− ∂2Φ

∂t2

)
=

1

c2
∂2Φ

∂t2
−∇2Φ− ∂

∂t

(
~∇ · ~A+

1

c2
∂Φ

∂t

)
=

ρ

ε0
.

Notice the appearance of the d’Alembertian operator

� = ∇2 − 1

c2
∂2

∂t2

acting on the scalar potential; using this notation, we may rewrite the above
equation as

�Φ = − ρ
ε0
− ∂

∂t

(
~∇ · ~A+

1

c2
∂Φ

∂t

)
.

Now let’s look at Ampère’s law: putting in the potentials gives

~∇× (~∇× ~A) = µ0
~J + µ0ε0

∂

∂t

(
−~∇Φ− ∂ ~A

∂t

)

which, after using µ0ε0 = 1/c2 and ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2 ~A gives

~∇(~∇ · ~A)−∇2 ~A = µ0
~J − 1

c2

(
~∇∂Φ

∂t
+
∂2 ~A

∂t2

)

and a bit of rearranging results in

∇2 ~A− 1

c2
∂2 ~A

∂t2
= � ~A

= −µ0
~J + ~∇

(
~∇ · ~A+

1

c2
∂Φ

∂t

)
.

Notice that the quantity in the brackets in this equation is the same as
the one in the equation for Φ. Now, recall that potentials are not uniquely
defined; if Φ and ~A give specific electric and magnetic fields, then for any
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function χ, Φ − ∂χ/∂t and ~A + ~∇χ give exactly the same fields. Thus, we
can use this flexibility in defining our potentials to require them to satisfy
the condition

~∇ · ~A+
1

c2
∂Φ

∂t
= 0.

When we impose a condition on our potentials, it’s called a gauge choice. In
the static case, we chose the Coloumb gauge ~∇· ~A = 0, but here we make the
above choice, called (for reasons we’ll see in a few lectures) the Lorentz gauge.
Why this choice? Well, it simplifies the equations which the potentials must
satisfy to

�Φ = − ρ
ε0
, � ~A = −µ0

~J.

Notice these are decoupled; the first says that the scalar potential is deter-
mined only by the charge density and the second that the vector potential is
determined only by the current density.

How do we solve these? This is precisely what we discussed in this week’s
tutorial – we use the Green’s function for the d’Alembertian. If we have a
function satisfying

�t,~rG(t, ~r; t′, ~r ′) = δ(t− t′)δ(~r − ~r ′)

then the general solutions to the above two equations are

Φ(t, ~r) = Φ0(t, ~r)−
1

ε0

∫
G(t, ~r; t′, ~r ′)ρ(t′, ~r ′) dt′ d3~r ′,

~A(t, ~r) = ~A0(t, ~r)0 − µ0

∫
G(t, ~r; t′, ~r ′) ~J(t′, ~r ′) dt′ d3~r ′

where Φ0 and ~A0 satisfy �Φ0 = 0 and � ~A0 = ~0.
We showed in tutorial that one such Green’s function is

G(t, ~r; t′, ~r ′) = − 1

4π

δ
(
t− t′ − |~r−~r

′|
c

)
|~r − ~r ′|

so this gives the scalar potential as

Φ(t, ~r) = Φ0(t, ~r) +
1

4πε0

∫
ρ(t′, ~r ′)

|~r − ~r ′|
δ

(
t− t′ − |~r − ~r

′|
c

)
dt′ d3~r ′

= Φ0(t, ~r) +
1

4πε0

∫ ρ
(
t− |~r−~r

′|
c
, ~r ′
)

|~r − ~r ′|
d3~r ′
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because the argument of the delta-function is zero when t′ = t− |~r − ~r ′|/c.
But why this Green’s function? They aren’t unique, so why this one and

not another? For example, the function

G+(t, ~r; t′, ~r ′) = − 1

4π

δ
(
t− t′ + |~r−~r ′|

c

)
|~r − ~r ′|

also satisfies Green’s equation, and if we use this instead and follow the same
steps as above, we’d get a scalar potential

Φ+(t, ~r) = Φ0(t, ~r) +
1

4πε0

∫ ρ
(
t+ |~r−~r ′|

c
, ~r ′
)

|~r − ~r ′|
d3~r ′.

Mathematically, these both solve �Φ = −ρ/ε0. But it’s physics that tells us
the first is correct and the second is wrong.

Look at the time-dependence in the first expression for Φ; t − |~r − ~r ′|/c
appears in ρ. What this indicates is that at the time t we’re measuring Φ, the
contribution due to the little bit of charge at ~r ′ is from the past, specifically
a time |~r − ~r ′|/c before t. This is fine; we fully expect the present potential
to be due to what the charges were doing a little while ago, since it takes
a bit of time for the information to reach us. In fact, it’s exactly what we
expect: |~r − ~r ′| is the distance between us and the charge, and if the info
travels at the speed of light, |~r − ~r ′|/c is precisely the time it would take.

In contrast, in Φ+, it’s t + |~r − ~r ′|/c that’s in the density. But this is
in the future, meaning the potential in the present is determined by things
the charges haven’t done yet. In short, we have a violation of causality in
Φ+, and since cause-precedes-effect seems to be built into the universe, we
discard this solution on the basis of physics.

In fact, the Green’s function

G(t, ~r; t′, ~r ′) = − 1

4π

δ
(
t− t′ − |~r−~r

′|
c

)
|~r − ~r ′|

is the only one that respects causality, and so this is the one we must use
whenever solving a physics problem involving the d’Alembertian. The time
t − |~r − ~r ′|/c is sometimes called the retarded time tret and this particular
function the retarded Green’s function. The other solution G+ is similarly
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referred to as the advanced Green’s function and tad = t + |~r − ~r ′|/c as the
advanced time.

And notice something revolutionary has just happened. This is supposed
to be classical physics, in the sense of what Maxwell and his colleagues knew
in the mid-to-late 19th Century. But somehow concepts – like causality –
related to relativity have shown up. This will be elaborated upon in the final
part of this module a few lectures from now...

So we’ve found a solution for the scalar field, and since we now know
which Green’s function to use, we use the same sorts of calculations to get
the vector potential as well. Thus, the most general physical solutions to the
potential equations are

Φ(t, ~r) = Φ0(t, ~r) +
1

4πε0

∫ ρ
(
t− |~r−~r

′|
c
, ~r ′
)

|~r − ~r ′|
d3~r ′,

~A(t, ~r) = ~A0(t, ~r) +
µ0

4π

∫ ~J
(
t− |~r−~r

′|
c
, ~r ′
)

|~r − ~r ′|
d3~r ′.

Now, Φ0 and ~A0 satisfy the source-free equations and are determined by
whatever boundary conditions we may have. However, if we specifically
consider cases of localised charges and currents, then Φ → 0 and ~A → ~0
as |~r| → ∞ can be imposed and this leads to Φ0 and ~A0 both vanishing.
Thus, in the cases we’ll be looking at now, we’ll use

Φ(t, ~r) =
1

4πε0

∫ ρ
(
t− |~r−~r

′|
c
, ~r ′
)

|~r − ~r ′|
d3~r ′,

~A(t, ~r) =
µ0

4π

∫ ~J
(
t− |~r−~r

′|
c
, ~r ′
)

|~r − ~r ′|
d3~r ′

as the formulae giving our potentials.
(For consistency’s sake, we should now check that the above satisfy the

Lorentz gauge condition, but we won’t do that here. I may do it in next
week’s tutorial, but if I don’t manage to do that, try it yourself. You’ll see
that the gauge condition is indeed satisfied.)
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B. EM Fields for Localised Oscillatory Sources
So we have expressions for the scalar and vector potentials for the general

time-dependent case, and these of course give the electric and magnetic fields.
At least, they would if we could actually calculate them, but only for very
simple, highly symmetric systems do analytic solutions exist, so we now need
to ask what we can do in more complicated cases.

The answer is, of course, we approximate. There will be lots of similarity
between what we do now and what we did when doing the multipole expan-
sions in the static case. However, we’ll find that the time-dependence makes
things much more interesting, and we’ll actually be able to derive the basic
principles behind telecommunication, which is, after all, the study of how to
manipulate EM fields to transmit information over long distances.

Our first approximation is that the time-dependence of all of our sources
is simply oscillatory; more specifically, our current density has the form

~J(t, ~r) = Re
[
~̃J(~r)e−ι̇ωt

]
for some frequency ω and complex function ~̃J(~r). This immediately gives the
charge density via the continuity equation:

∂ρ

∂t
= −~∇ · ~J

= −Re
[
~∇ · ~̃Je−ι̇ωt

]
and if we integrate this with respect to t, we see that

ρ(t, ~r) = Re
[
ρ̃(~r)e−ι̇ωt

]
,

ρ̃(~r) = − ι̇
ω
~∇ · ~̃J(~r)

so we only need to specify ~J to get ρ.
Now we put these two sources into our expressions for the potentials; for

the vector potential, we find

~A(t, ~r) =
µ0

4π

∫ Re
[
~̃J(~r ′)e−ι̇ω(t−|~r−~r

′|/c)
]

|~r − ~r ′|
d3~r ′

= Re
[
~̃A(~r)e−ι̇ωt

]
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where

~̃A(~r) =
µ0

4π

∫ ~̃J(~r ′)eι̇ω|~r−~r
′|/c

|~r − ~r ′|
d3~r ′.

The scalar potential can be found from either the expression in terms of
ρ or the Lorentz gauge condition ∂Φ/∂t = −c2~∇ · ~A; either way, we find
Φ(t, ~r) = Re[Φ̃(~r)e−ι̇ωt] where

Φ̃ = − ι̇c
2

ω
~∇ · ~̃A.

(Again, everything is given once ~̃J is picked.)
Now, we’re not talking about propagating waves (yet), but just for no-

tational convenience, we’ll still define the wave number k to k = ω/c. This

means that one of the factors in the integrand giving ~̃A is eι̇k|~r−~r
′|/|~r−~r ′|, and

we want to Taylor-expand this as a function of the primed variables around
~r ′ = ~0. The motivation for doing this is the same as in the static case: if
the charge/current configuration is localised, it’ll have some characteristic
size L so that all the integration variables have |~r ′| = r′ ≤ L. Thus, if we
look at positions with |~r| = r � L, r′/r will be a very small parameter and
expanding in terms of this parameter will give us a way to approximate our
potentials and fields. However, we also have another length scale in the sys-
tem, namely the effective wavelength λ = 2π/k. This is what distinguishes
the time-dependent situation from the static one (where we only had a sin-
gle length scale). We’ll see shortly that we’ll need to consider how r and λ
compare in size when we try to approximate our potentials and fields.

To make the notation a bit easier, define f(~r) = eι̇k|~r|/|~r|; thus, we want
the Taylor series expansion of f(~r−~r ′) around ~r ′ = ~0. The first three terms
in this expansion are

f(~r − ~r ′) = [f(~r − ~r ′)|~r ′=~0 +
∑
i

[∂′if(~r − ~r ′)|~r ′=~0 x
′
i

+
1

2

∑
i,j

[
∂′i∂
′
jf(~r − ~r ′)

∣∣
~r ′=~0

x′ix
′
j + . . .

where ∂′i = ∂/∂x′i. This looks a bit complicated, but we can actually simplify
it quite nicely with this trick: we’ve noted before that if we have a function
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that depends on the difference between two variables, the derivative with
respect to one is the negative of the derivative with respect to the other. In
this case, ∂′if(~r − ~r ′) = −∂if(~r − ~r ′). Taking another derivative picks up
another minus sign, so ∂′i∂

′
jf(~r − ~r ′) = ∂i∂jf(~r − ~r ′), and so on. These are

exactly the types of derivatives which appear in the above expansion. Now,
after taking the derivative, we set ~r ′ to zero, but using the above identities,
we see that because we’re replaced all ~r ′-derivatives by ones with respect to
~r, we may set ~r ′ to zero before taking the ~r-derivatives, so that ∂′if(~r−~r ′) at
~r ′ = ~0 is just −∂if(~r) and so on. More generally, the nth-derivative appearing
in the expansion cen be written as[

∂′i1∂
′
i2
. . . ∂′inf(~r − ~r ′)

∣∣
~r ′=~0

= (−1)n∂i1∂i2 . . . ∂inf(~r).

This is true for any function f , but the specific function we consider here is
particularly easy when we express it in spherical coordinates: f(~r) = eι̇kr/r.
Using all of this therefore tells us that

eι̇k|~r−~r
′|

|~r − ~r ′|
=

eι̇kr

r
−
∑
i

∂

∂xi

(
eι̇kr

r

)
x′i +

1

2

∑
i,j

∂2

∂xi∂xj

(
eι̇kr

r

)
x′ix
′
j + . . .

We know that ∂ir = xi/r, and, using this and some straightforward calculus,
we find that

∂

∂xi

(
eι̇kr

r

)
= (ι̇kr − 1)xi

eι̇kr

r3
,

∂2

∂xi∂xj

(
eι̇kr

r

)
= [3(1− ι̇kr)xixj − k2r2xixj − r2(1− ι̇kr)δij]

eι̇kr

r5

and higher derivatives would be computed similarly.
Now, with all the above tricks, we could in principle compute all terms

in the expansion by taking derivatives of eι̇kr/r. However, here we’ll only
consider the leading-order term, as it’s the one that dominates when r is
large compared to the size of the charge distribution. Therefore, the vector
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potential is

~A(t, ~r) =
µ0

4π

∫ Re
[
~̃J(~r ′)e−ι̇ω(t−|~r−~r

′|/c)
]

|~r − ~r ′|
d3~r ′

= Re

[
µ0

4π

∫
~̃J(~r ′)e−ι̇ωt

eι̇k|~r−~r
′|

|~r − ~r ′|
d3~r ′

]
= Re

{
µ0

4π

eι̇(kr−ωt)

r

∫
~̃J(~r ′)

[
1 +O

(
r′

r

)]
d3~r ′

}
≈ Re

[
µ0

4π

eι̇(kr−ωt)

r

∫
~̃J(~r ′) d3~r ′

]
.

Notice the prefactor eι̇(kr−ωt)/r; note that if ~k = kêr, then kr−ωt = ~k ·~r−ωt,
so this describes a wave propagating radially away from the origin, with an
amplitude that falls off as 1/r. Such a wave is called a spherical wave because
it solves the wave equation for a spherically-symmetric system. Thus, a
localised oscillating charge configuration sends out a spherical EM wave.

Let’s now compute the vector potential above; its ith-component is

Ai(t, ~r) ≈ Re

[
µ0

4π

eι̇(kr−ωt)

r

∫
J̃i(~r

′) d3~r ′
]

and we’ve seen an integral like this before. Recall that quite a while ago we
proved the identity

J̃i(~r
′) = ~∇′ ·

[
x′i
~̃J(~r ′)

]
− x′i~∇′ · ~̃J(~r ′).

When we derived this, we were looking at the static case, where the diver-
gence of ~J vanished, and so the last term in the above identity was zero.

That’s not the case now, however; we showed that ~∇ · ~̃J = ι̇ωρ̃, so∫
J̃i(~r

′) d3~r ′ =

∫ {
~∇′ ·

[
x′i
~̃J(~r ′)

]
− ι̇ωx′iρ̃(~r ′)

}
d3~r ′

= −ι̇ω
∫
x′iρ̃(~r ′) d3~r ′.

(As usual, we’ve assumed that all sources vanish at infinity, so the surface
integral we get from the first term above vanishes.) This is proportional to
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the complex electric dipole amplitude, and here’s why: the ith-component of
the electric dipole moment is

pi(t) =

∫
x′iρ(t, ~r ′) d3~r ′

= Re

[
e−ι̇ωt

∫
x′iρ̃(~r ′) d3~r ′

]
= Re

[
e−ι̇ωt(~̃p0)i

]
where

~̃p0 =

∫
~r ′ρ̃(~r ′) d3~r ′.

(We use a zero subscript to drive home the point that this is a constant
vector.) Therefore, ∫

~̃J(~r ′) d3~r ′ = −ι̇ω~̃p0.

(Alternatively, since we assume ~̃J is given, this says the complex electric

dipole is just the integral of ι̇ ~̃J/ω.) Thus, our vector potential is

~A(t, ~r) ≈ µ0

4π
Re

[
− ι̇ω~̃p0 e

ι̇(kr−ωt)

r

]
.

From this, we can use the Lorentz gauge condition to find the scalar potential,
or at least its complex amplitude:

Φ̃(~r) = − ι̇c
2

ω
~∇ · ~̃A(~r)

≈ − ι̇c
2

ω
~∇ ·
(
−ι̇ωµ0

4π

eι̇kr

r
~̃p0

)
=

1

4πε0

(1− ι̇kr)(~r · ~̃p0)eι̇kr

r3

where we’ve again used c2 = 1/µ0ε0. Thus,

Φ(t, ~r) = Re
[
Φ̃(~r)e−ι̇ωt

]
≈ 1

4πε0
Re

[
(1− ι̇kr)(~r · ~̃p0)eι̇(kr−ωt)

r3

]
.
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But, of course, it’s the electric and magnetic fields we actually want. We
see that all the sources oscillate with the same frequency ω, so the fields will
as well and thus we can write

~E(t, ~r) = Re
[
~̃E(~r)e−ι̇ωt

]
, ~B(t, ~r) = Re

[
~̃B(~r)e−ι̇ωt

]
.

Now, we actually only need the magnetic field; since we’re assuming that
we’re far away from any sources, ~J = ~0 in this region and thus Ampère’s law
gives

~∇× ~B = Re
[
(~∇× ~̃B)e−ι̇ωt

]
=

1

c2
∂ ~E

∂t

= Re

[
− ι̇ω
c2
~̃Ee−ι̇ωt

]
and therefore we get the electric field amplitude in terms of the magnetic
field:

~̃E =
ι̇c2

ω
~∇× ~̃B.

Now for the magnetic field: ~B = ~∇× ~A implies ~̃B = ~∇× ~̃A, or

~̃B ≈ ~∇×
(
−ι̇ωµ0

4π

eι̇kr

r
~̃p0

)
=

ι̇ωµ0~̃p0
4π

× ~∇
(
eι̇kr

r

)
=

µ0

4π
(ι̇kr − 1)

(
ι̇ω~̃p0 × ~r eι̇kr

r3

)
.

This is an approximation that’s good for all values of r that are much greater
than the size of our charge distribution. However, now we need to consider
the other length scale mentioned earlier, the wavelength λ = 2π/k = 2πc/ω.
We see that kr = 2πr/λ, so how we treat this term depends on how r and λ
compare to one another, and this breaks our analysis into two regimes:
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1. The Near-Zone Approximation
We consider first the case where kr is very small, i.e. r � λ; even though

r is large compared to the size of the distribution, it’s small compared to
the wavelength of the oscillation. This is called the “near zone”, and in this
region, we see that we can ignore the kr term and so the complex amplitude
of the magnetic field is approximately

~̃B ≈ −µ0

4π

(
ι̇ω~̃p0 × ~r eι̇kr

r3

)

and so the electric field amplitude is

~̃E ≈ ι̇c2

ω
~∇×

[
−µ0

4π

(
ι̇ω~̃p0 × ~r eι̇kr

r3

)]

=
1

4πε0
~∇×

(
~̃p0 × ~r eι̇kr

r3

)
.

Now, any time the derivative acts on eι̇kr, it’ll pull down a factor of k. How-
ever, since the wavelength is so large, terms with this factor will be much
smaller than terms without it and so we may treat the exponential as a
constant in the near zone, and thus

~̃E ≈ eι̇kr

4πε0
~∇×

(
~̃p0 × ~r
r3

)
.

But we’ve already done this calculation! Recall that in magnetostatics, the
dipole contribution to the vector potential was proportional to ~m×~r/r3, and
the magnetic field is just the curl of this, which is exactly the calculation we
have here, and the result is the same: a dipole field of the form

~̃E ≈ eι̇kr

4πε0

3(~̃p0 · ~r)~r − r2~̃p0
r5

.

Now, an important point, especially in contrast to what we’ll see in the
next lecture: Note that the magnetic field goes as 1/r2 as r gets big, and we
see that the electric field goes as 1/r3, and so the Poynting vector – which
gives the power flux – goes as 1/r5. Now, suppose we surround the source
with a very large sphere, pick a small area on this sphere and ask, what’s
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the power flowing through this area? The surface area element on a sphere
of radius r is d~σ = r2 sin θ dθ dφ êr, so the bit of power flowing through it is
~S · d~σ, which goes as 1/r5 times r2, or 1/r3. Thus, as the sphere gets larger,
the power flowing through it decreases very rapidly, and thus drops to zero
in the limit of an infinitely-large sphere.

Maybe this doesn’t seem too surprising – we expect fields to fall off as r
increases – but as we’ll see in the next topic, something very different happens
to the radiated power in the case where kr is large, and this difference is at
the very core of modern telecommunications. But that’s for next week...

Side comment: although this assumption seems restrictive, it’s actually
not. Keep in mind that any time-dependent function f(t) may be written as

f(t) =

∫ ∞
−∞

f̃(ω)e−ι̇ωtdt

where (up to some numerical factor) f̃(ω) is the Fourier transform of f(t).

So if we interpret ~̃J as the Fourier transform of ~J(t, ~r) with respect to t,
we can do all calculations as if the time-dependence was purely e−ι̇ωt. Then
by inverse Fourier-transforming all results with respect to ω, we’ll obtain
expressions valid for any time-dependence of ~J . However, we’ll for the most
part assume a simple oscillatory behaviour to simplify the calculations.
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