MP465 — Advanced Electromagnetism
Lectures 13 & 14 (25 March 2020)

A. Maxwell’s Equations in Matter (continued)

In the last lecture, we introduced the polarisability (also called the elec-
tric polarisatioﬁ, but we’ll save “polarisation” for another unrelated concept
that’ll be showing up in a few lectures) Pofa medium, which is basically
an electric dipole density due to the charges bound to the constituents mak-
ing up the medium. We argued that the contribution of this to the scalar
potential should be
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we can use the “reverse product rule” and Gauss’ theorem to obtain
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where X is the surface of the medium under consideration. The contribution
Ep of the polarisability to the electric field is the negative gradient of this, but
we're 1nterested in the divergence of Ep. Why? Well, we know that the total
electric field E is related to the total charge density pir by V-E= * Prot /€o. SO
it follows that if Ep is entirely due to the bound charges, then V-E P = b/ €0,
where pp is the bound charge density.

So if we want the divergence of this field, we use V.- Ep = —V2®p to
obtain

V- Ep(f) = —V&p()
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since the laplacian is with respect to the unprimed variables. We’ve seen the
quantity in the brackets loads of times before: it’s —4mé6®) (7 — ), so
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Now, we know what to do if we have a volume integral with a delta-function

in it, but what do we do if it’s a surface integral? The above expression

involves both. '

In general, it depends on the surface (not surprisingly). However, if we
decide that we’re not interested in what’s happening right on the surface of
the medium, but only in its exterior or interior, then the surface integral
vanishes. Why? Well, all the points of integration (i.e. all values of the
position vector 7) lie on X, but if the position where we're looking — 7 —
isn’t on X, then the argument of the delta-function in the surface integral
is never zero and so the delta-function vanishes, leaving us only with the
volume integral. '

And that we can do, and we get the result
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So if we know the bound charge density, then we can say something about
the polarisability. But we don’t in general know p, except for very simple
media (like, say, a monatomic ideal gas). It’s the free charge density p that
we have control over or some way of measuring. Does that give us anything?
Yep; piot = p» + p (a charge can only be free or bound), so

P = Prot — Po = foﬁ"E_#ﬂ‘ V.-P
so it’s not the electric field or polarisability that’s determined by the free
charges, it’s the peculiar combination €E + P that is. This quantity is
called the “electric displacement field” and is denoted by D, and so we see

that in a medium that’s not pure vacuum, we have to modify one of Maxwell’s
equations to

V.-D = p



where p is the free charge density and D= GOE + P the electric displacement
field.

But this still doesn’t solve the basic problem, because even though the
above equation gives us D if we know p, E is the physical -field that af-
fects charges, and E = (D — P)/ey does us no good if we don’t know the
polarisability.

Luckily for us, for most materials under normal conditions, there’s a
nice relationship between Pand E. We fully expect P to depend on the
electric field; the bound charges will feel forces and reconfigure themselves
when put into an electric field, and this will change the electric dipoles of
the constituents and thus P. In principle, this relationship could be very
complicated, but provided the electric field isn’t too large, and the medium
in question isn’t too exotic, it’s found empirically that the polarisability is
proportional to E. A medium for which this is the case is said to be a
“linear” medium, and for such media, we can measure a physmal property
called its electric susceptibility x., defined simply as P= eoer ( Note that
the presence of €y in this equation makes x. a dimensionless quantity.)

- Electric susceptibilities can have just about any value ranging from zero
for a total vacuum (there are no bound charges and thus no intrinsic dipoles)
through about 10 for graphite up to about 80 for water (and higher still).
The only commonality is that electric susceptibility is never negative.

But a far more useful quantity is a material’s electric permittivity e. This
arises because the equation we have involves f), not P. But for a linear
material, we see -
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with € = (14 x¢)eo. This is why the fundamental constant ¢ is the “vacuum
permittivity”; when x. = 0, € = €. For all other media, the susceptibility
is positive, so € > ¢y for all nonvacuum situations. Thus, D = €E is an
equivalent way of defining a linear medium.

But note what this gives us when we put it into our modified Maxwell
equation:

o (B)=p = V-E-

LS



So for a linear medium, we start from the usual form of Gauss’ law for electric
fields, but treat p as the free charge density and replace ¢y by the perm1tt1v1ty
of the medium under consideration.

One comment before we move on; although the expressions we used in
obtaining all of the above (such as the scalar potential of a electric dipole)
were based on what we know from electrostatics, mcludmg time dependence
does not change the basic results, namely, V- D = p(t,7) with D(t,7) =
6oE(t,7) + P(t,7) and D = €E for a linear medium. Time-dependence will
require us to do some additional work in the next part...

Right, so now onto the magnetic case. Given some medium, what do
we expect to contribute to the total magnetic field B? The one quantity
we assume we know is the free current density f, and that should certainly
have an effect on what the magnetic field is. But there are also the intrinsic
magnetic dipole moments of the constituents making up the medium. These
are much like the intrinsic electric dipole moments; unless the medium is
extremely simple, actually being able to calculate what the magnetic dipole
moments of each constituent will be extremely difficult (if not impossible),
so we use the same idea as we did for the electric case. Namely, if we take a
small volume d37’ located at a position 7/ and measure the magnetic dipole
dm’ in this volume, we can define the magnetisation M via
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so M is a magnetic dipole density in the same way P is an electric dipole
density. Thus, the total contribution of these tiny intrinsic magnetic dipoles
to the vector potential should be
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Following the same ideas as we did in the electric case, we see that this may



be rewritten as
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The first integral may be rewritten using the vector calculus identity
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where @ is any vector field and V is a region of space with boundary . (This
identity is relatively well-known, but I might prove it in next week’s tutorial
anyway.) Using it gives

W, —/ —o/
|7 — 7| 47r r—r|

An (F) = 47r d&” X

where ¥ is the -boundary of the medium.

The magnetic field from this is Em =V x ffm, of course, but we want
V x Em, since that’s what qwill appear in Ampere’s law. We know that
V- Bp = V(V - Ay) — V2A,,, and we already showed in lecture that the
divergence of the vector potential due to a magnetic dipole is zero, so the
first term vanishes. Thus,
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once again using the fact that (—4x|F—7’|)™! is the Green’s function for the
Laplacian. Now we’re in a very similar situation to the one we had in the
electric case, and do the same thing: if we’re not looking at a point on the
surface of the medium, then the first integral vanishes, and since the second
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is an integral over all space, we get V x Em = Moﬁ x M. Now, Ampere’s
law has the form (curl of magnetic field) = (uo times current density), so we
can identify the curl of the magnetisation with a kind of “magnetic moment
current” jm:

VXM = Jp.

Now, just to be clear, this is not a current which arises from moving
charges. For example, we know an electron has an intrinsic magnetic dipole
moment, but this isn’t due to any charges moving around, it’s a natural
property of the electron. However, we can say that there’s an effective current
that gives the same moment and call it J (For something like a classical
analogy, think of the Coriolis force. It’s a fictitious force due to us being in a
rotating frame of reference, but for meteorological calculations, we can treat
it as real to predict weather patterns and the like.)

So with this interpretation of fm, we could propose that this means that
the total current den31ty is Jtot = J +J and put this into our magnetostatic
equation VxB= 1o Jtot much like we did in the electric case. Thus, the free
current density is

J = Jw—
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so we see that it’s not E or M that’s determined by the free current, it’s
the combination H = B/uo — M that is. This quantity is known as the
“magnetic intensity field” and we see that it’s what appears in our second
modified (static) Maxwell equation:

VxH = J.

Before we see how to properly include time dependence, let’s look at
the magnetisation and magnetic intensity in a bit more detail: it’s B we
want, but like in the electric case, it’s not given directly by J. We only
get H, and since B = po(H + M), we need to know M. But we fully
expect the magnetisation to depend on E, since an external magnetic field
will cause the intrinsic dipoles in the medium to orient themselves in one or
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another particular direction. Precisely how M changes with B depends on
the substance we look at.

The first classification we need is those substances which can have a
nonzero magnetisation even when there is no external magnetic field. These
are ferromagnets and are the materials permanent magnets are made out of,
with the three most famous being iron, nickel and cobalt. (Note that ferro-
magnets don’t have to be magnetised; it’s just that they can be magnetised.
There’s plenty of chunks of iron in the world that don’t stick to your fridge
door.) A magnetised ferromagnet will have a magnetisation which is largely
independent of B and thus needs to be determined in some other way (via
empirical evidence or some statistical-mechanical model of its microscopic
structure).

However, if we are considering a medium which is not already magnetised,
then we’re in luck, because many of these materials are also linear in a similar
way to we saw in the electric case, i.e. their magnetisation is proportional to
H (at least for small fields). For these materials, we can define the magnetic
susceptibility x., as

M = xnH

and since M and H have the same units, ., is dimensionless.

These magnetic susceptibilities differ from electric susceptibilities in two
main ways; for most materials at reasonable temperatures and pressures,
they all tend to be pretty small in magnitude (107* is at the upper-end)
and they can be of either sign: positive x,, indicates the intrinsic moments
of the medium tend to line up with H and are called “paramagnetic”’, and
negative x s means the moments tend to oppose the magnetic intensity and
are “diamagnetic”.

But M o« H also means B o H:

E = Ho (ﬁ +M )
so if we define the magnetic permeability u of a linear medium by u = po(1+
Xm), we see H = B/u. Again, there are no bound or intrinsic moments in
the vacuum, so ., = 0 in this case and this is why the fundamental quantity

o is called the vacuum permeability. A paramagnet will have > po and a
diamagnet will have p < po.



So for a linear magnetic material, our new static Maxwell equation gives
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which is just the static Ampere law with the replacements j;ot — J and
Lo — 4 much as we saw pyx — p and ¢y — € for a linear electric medium. -

So we showed that Vx H = f, and this would be the starting point for any
static situation where we have a medium of some sort. But we now want to
see what happens when time dependence is included, because that’s where all
the fun stuff is. We stated before that inclusion of time dependence doesn’t
change the argument for the electric case, and this is because electric dipoles
depend only on the location, and not the movement, of electric charges. But
that’s not the case for magnetic dipoles: moving charges very definitely do
influence what the magnetic dipole will be.

So what moving charges do we have? J includes all info about the move-
ment of free charges, Jp, is an effective current which tells us which fictitious
moving charges would give us the intrinsic moments of our constituents, but
what hasn’t been included is the movement of the bound charges. Unlike the
imaginary charges in Jm, these charges are real and in shifting position W1th1n
the medium, they will obviously move and create a bound current density Jy.
Thus, we expect Jiot = J + Jop + J, to be the total current density appearing
in the time-dependent version of Ampere’s law.

How do we determine this bound current? Here’s an extremely simplified
argument that gives the flavour of the full one as well as the result we need:
let’s take one of our constituent particles and look at its electric dipole mo-
ment. We can think of modelling it as two charges ¢ and —q separated by a
distance a pointing in a direction 7, so p'= gan, as depicted below:




Now, ¢ is a bound charge and so cannot leave the particle, but the charge
distribution within the particle can change with time. If we make the simpli-
fying assumption that only the magnitude, and not direction, of the dipole
changes, then we have p(t) = q(t)ani. The time derivative of this is gan,
but ¢ = I, a bound current flowing within the particle from one end of the
dipole to the other. Now, if we think of this particle having a cross-sectional
area (normal to 7) of o, then J, = I,/o is the bound current density. Since
all flow is along the dipole’s direction, J?, = Jpf, S0 ﬁ = aa.]—;;. But ao is the
volume occupied by the particle, so p/ac is the electric dipole density, i.e.
the polarisability. And the bound current density is the time-derivative of
this:
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So now let’s see what the expression for the free current density is: recall
that when we include time-dependence, Ampere’s law is
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Now we have to come to the other two Maxwell equations, but they don’t
change at alll Why? Well, being in a medium only has an effect on what
sources we have to use, which is why we have to talk about free charges,
bound currents, et cetera. But two of Maxwell’s equations — Gauss’ law for
magnetic fields and Faraday’s law of induction — don’t involve the sources at
all, and so therefore we do not expect them to change one bit, and thus

¢.B=0, vxB=-2
. ot



hold .in all cases.

Finally, there’s the continuity equation which imposes charge conserva-
tion. However, by assumption, free charges remain free and never get bound
to any constituents of the medium and bound charges remain bound and
never escape from the atom/molecule they’re stuck in. Thus, free elec-
tric charge and bound electric charge are separately conserved. meaning
dp/ot + V-J=0 even when p and J refer to only the free (and not the
total) densities. Note that the conservation of bound charge is automatic,
since p, = —V-Pand J, = aP/ Ot and so 0py/0t + V - J, = 0 follows im-
mediately. (Also note that since Jm is a fictitious current density, there is
no associated charge density pn, and since fm =V xM implies V- jm =0,
Opm /0t + V - J, = 0 is consistent with pp, = 0.)

So, to summarise all of this: suppose we are in a medium characterised
by a polarisability P(t,7) and a magnetisation M (¢,7). If the free charge
density p(t,7) and free current density J(t,7) are given and satisfy

dp

8t+v J = 0,

then Maxwell’s equations determining the electric field E(t, f') and magnetic
field B(t,T) are
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where D = g, E + P is the electric displacement field and H=B /1o — M is
the magnetic intensity field.

Furthermore If the medlum is linear with permlttlvrty € and permeability
1, then D=¢E and H=B /1 and the above equations become

And it’s these equations we’ll start with in the next lecture.
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