
From now on we shall restrict our attention to a linear medium, in which D = ǫE and
H = 1

µ
B. In this case

∇× E +
∂B

∂t
= 0 ∇.B = 0

∇×B− ǫµ
∂E

∂t
= µJ ∇.E =

ρ

ǫ
,

(22)

and

w =
1

2
(ǫE.E +

1

µ
B.B) S =

1

µ
(E×B).

5. Plane Waves and Radiation from Simple Systems

Differentiating Maxwell’s equations (22) gives

0 = ∇×
(
∇×E +

∂B

∂t

)
= ∇(∇.E)−∇2E +

∂

∂t
(∇×B) =

1

ǫ
∇ρ−∇2E + ǫµ

∂2E

∂t2
+ µ

∂J

∂t

⇒ ∇2E− ǫµ
∂2E

∂t2
=

1

ǫ
∇ρ + µ

∂J

∂t

and

µ(∇× J) = ∇×
(
∇×B− µǫ

∂E

∂t

)
= ∇(∇.B)−∇2B− µǫ

∂

∂t
(∇× E) = −∇2B + ǫµ

∂2B

∂t2

⇒ ∇2B− ǫµ
∂2B

∂t2
= −µ(∇× J).

In a charge and current free region of space, ρ = 0 and J = 0, Maxwell’s equations im-
ply (but are not equivalent to) a set of coupled, linear, homogeneous differential equations
for E and B,

∇2E− ǫµ
∂2E

∂t2
= 0

∇2B− ǫµ
∂2B

∂t2
= 0. (23)

These equations have wave-like solutions that move with speed v = 1/
√

µǫ, electro-
magnetic waves. To investigate this we shall adopt a complex notation and define os-
cillating complex electric and magnetic fields,

E(x, t) = E0e
i(k.x−ωt) B(x, t) = B0e

i(k.x−ωt) (24)

where E0 and B0 are constant complex vectors, k is a real vector (the wave-vector) and
ω > 0 (an angular frequency). This notation is a mathematical convenience, the true
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physical fields are just the real part of these, E = ℜ(E) and B = ℜ(B). For example if
E0 = E0 and B0 = B0 are real vectors then

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos (k.x− ωt) and B(x, t) = ℜ

(
B(x, t)

)
= B0 cos (k.x− ωt),

while, if E0 = E0e
iδ and B0 = B0e

iδ with E0 and B0 real vectors and δ a constant phase,
then

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos (k.x− ωt + δ) and B(x, t) = ℜ

(
B(x, t)

)
= E0 cos (k.x− ωt + δ).

As long as we only deal with expressions that are linear in E and B with real co-efficients,
such as Maxwell’s equations, then we can use this complex notation and just extract the
real part at the end of the calculation.

In this notation equations (23) give

∇2E − ǫµ
∂2E
∂t2

= (−k.k + ǫµω2)E = 0

∇2B − ǫµ
∂2B
∂t2

= (−k.k + ǫµω2)B = 0

⇒ (−k.k + ǫµω2) = 0 ⇒ ω

k
=

1√
µǫ

.

These configurations correspond to waves of oscillating electric and magnetic fields with
wave-length λ = 2π/k and frequency ν = ω/2π moving in the direction of the unit vector
n = k/k at speed v = ω/k = 1/

√
µǫ.* Thus we can relate the speed of light in a medium,

such as water or glass, to ǫ and µ. For most materials µ ≈ µ0

v

c
=

√
ǫ0
ǫ

=
1√

1 + χe
< 1

so the refractive index is

n =
√

1 + χe

and the speed of light in the medium is related to the electric susceptibility.†

* What we have described here is a monochromatic electro-magnetic wave traveling
through a medium — we focused on a single frequency ω. In general a wave will consist
of a superposition of many frequencies, perhaps centred around a maximum intensity
of a given colour, but this can be described by adding different frequencies of different
intensities — again the linearity of Maxwell’s equation allows us to add solutions to get
more solutions.
† The electric susceptibility can be a function of frequency: in water, for example,

χe ≈ 80 for static fields but this is reduced to χe ≈ 0.8 at optical frequencies giving a
refractive index of n = 1.3.
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However this is not the whole story, equations (23) follow from, but do not imply,
Maxwell’s equations — information was thrown away in deriving them from (22) — to get
the full picture we should substitute (24) into (22):

∇× E +
∂B
∂t

= 0 ⇒ i(k× E0) = iωB0 ⇒ B0 =
1

v
(n× E0), (25)

∇×B − µǫ
∂E
∂t

= 0 ⇒ i(k× B0) = −iµǫωE0 ⇒ E0 = −v(n× B0), (26)

∇.E = 0 ⇒ k.E0 = 0 ⇒ n.E0 = 0, (27)

∇.B = 0 ⇒ k.B0 = 0 ⇒ n.B0 = 0. (28)

Thus n, E0 and B0 are mutually perpendicular. Let n = e3 and introduce a right-
handed orthonormal triple, (e1, e2, e3), with e3 = e1×e2. Then there are two independent
possibilities: either E0 is proportional to e1,

E0 = E0e1, B0 = B0e2 =
1

v
E0e2,

or E0 is proportional to e2,

E0 = E ′0e2, B0 = −B0e1 = −1

v
E ′0e1.

The most general wave-like solution of Maxwell’s equations is a linear combination of these
two possibilities,

E(x, t) =
(
E0e1 + E ′0e2)

)
eik(x.n−vt), B(x, t) =

1

v

(
−E ′0e1 + E0e2

)
eik(x.n−vt).

These two linearly independent possibilities are associated with the polarisation of
light. If the two complex constants E0 and E ′0 have the same complex phase δ, so E0 = E0e

iδ

and E ′0 = E′0e
iδ with E0 and E′0 real constants, and n is in the z-direction then k.n = kz

and the physical fields are

E(x, t) = ℜ
(
E(x, t)

)
=

(
E0e1 + E′0e2

)
cos(kz − ωt + δ)

and

B(x, t) = ℜ
(
B(x, t)

)
=

1

v

(
E0e2 − E′0e1

)
cos(kz − ωt + δ

)
.

The electric and magnetic fields therefore keep a fixed orientation in space and are at
right-angles to each other, and to the direction of motion n of the wave, but oscillate in
magnitude. This is called a plane polarised wave.

B

1

e
2 E

θ=
−1

tan (E ’/E )
00

Plane Polarised Wave

e
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Other geometries are possible if E0 and E ′0 have different complex phases, e.g. suppose
E0 = E0 and E ′0 = iE′0 with E0 and E′0 real. Then, again with n in the z-direction,

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos(kz − ωt)e1 −E′0 sin(kz − ωt)e2

and

B(x, t) = ℜ
(
B(x, t)

)
=

1

v
{E0 cos(kz − ωt)e2 + E′0 sin(kz − ωt)e1} ,

and again E and B are always at right-angles to each other, and to n, but this time they
rotate both describing an ellipse: the wave is said to be elliptically polarised. If E0 = E′0
they describe a circle and the wave is circularly polarised. If E ′0 = −iE′0 the rotation is
in the opposite direction (the two possible rotation directions for a circularly polarised
electro-magnetic wave are called different helicities).

e

e

1

2

Circularly Polarised Wave

E

 θ= −    tωk.n

Electro-magnetic waves carry energy and we calculate the energy flux using the Poynt-
ing vector. The Poynting vector will depend on time and its average value over a cycle of
oscillation is the more relevant quantity. First we must think a little about the meaning
of our complex notation for quantities that are quadratic in the fields, in fact the complex
notation is tailored towards calculating time-averages of quadratic quantities. To show
this we shall prove a little lemma:

If f(t) = f0e
−iωt and g(t) = g0e

−iωt, where f0 and g0 are independent of time t, then
the time average of ℜ(f)ℜ(g) over a complete cycle, T = 2π/ω, is

fg :=
1

T

∫ T

0

ℜ
(
f(t)

)
ℜ
(
g(t)

)
dt =

1

2
ℜ(f∗0 g0) (29)

where f∗0 is the complex conjugate of f0.

To prove this let
f0 = u + iv and g0 = ζ + iη
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where u, v, ζ and η are real and independent of t. Then

ℜ
(
f(t)

)
ℜ
(
g(t)

)
=

(
u cos(ωt) + v sin(ωt)

)(
ζ cos(ωt) + η sin(ωt)

)

= uζ cos2(ωt) + vη cos2(ωt) + (uη + vζ) cos(ωt) sin(ωt)

so

∫ 2π

ω

0

(
ℜ(f)

)(
ℜ(g)

)
dt = uζ

∫ 2π

ω

0

cos2(ωt)dt + vη

∫ 2π

ω

0

sin2(ωt)dt =
π

ω
(uζ + vη),

since
∫ 2π

ω

0
cos(ωt) sin(ωt)dt = 0 and

∫ 2π

ω

0
cos2(ωt)dt =

∫ 2π

ω

0
sin2(ωt)dt = π

ω . Hence the time
average

fg =
1

2
(uζ + vη).

But
ℜ(f∗g) = ℜ(f∗0 g0) = uζ + vη,

which proves (29).
We can now apply this to calculate the time-average of the energy flux at a point x

from the Poynting vector S = (E×B)/µ,

S(x) =
ω

2πµ

∫ 2π

ω

0

(
E(x, t)×B(x, t)

)
dt =

1

2µ
ℜ(E∗0 × B0) =

1

2vµ
E∗0.E0n,

independent of x (equations (25) and (28) have been used in the last step above). This is
related to the time-average of the energy density in the wave

w =
ω

2π

∫ 2π

ω

0

1

2

(
ǫE(x, t).E(x, t) +

1

µ
B(x, t).B(x, t)

)
dt

=
1

4

(
ǫE∗0.E0 +

1

µ
B∗0.B0

)
=

ǫ

2
E∗0.E0.

So, since v = 1/
√

ǫµ,

S = v w n,

a very natural result stating that the time-averaged energy-flux is in the direction n of the
wave and has a magnitude which is just the time-averaged energy times the speed of the
wave.

Electro-magnetic waves are produced by oscillating charge and current distributions
and in order to describe this we shall use the potentials rather than the fields.

Vector and Scalar Potentials

Since ∇.B = 0 we always have B = ∇×A, even in the presence of matter, so

∇× E +
∂B

∂t
= 0 ⇒ ∇×

(
E +

∂A

∂t

)
= 0.
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Hence E + ∂A

∂t can be expressed as a gradient, E + ∂A

∂t = −∇Φ, so

E = −∇Φ− ∂A

∂t
, B = ∇×A.

Notice that for any twice differentiable function Λ(r, t)

A′ := A +∇Λ ⇒ B = ∇×A′ = ∇×A

Φ′ := Φ− ∂Λ

∂t
⇒ E = −∇Φ′ − ∂A′

∂t
= −∇Φ− ∂A

∂t
.

Thus Φ′ and A′ give rise to the same E and B fields as Φ and A. The potentials Φ and A

for an electro-magnetic field configuration are not unique, there is an ambiguity in their
definition. The change

A′ → A +∇Λ

Φ′ → Φ− ∂Λ

∂t
(30)

is called a gauge transformation.* In the magnetostatics section we showed that A(r)
arising from a given J(r) satisfied ∇.A = 0, but we see now that this is not essential, if
∇.A = 0 then ∇.A′ 6= 0 unless ∇2Λ = 0 which need not always be the case. Different
choices of Λ lead to different gauges and a choice which gives∇.A = 0 is called the Coulomb

gauge, which is useful for problems in statics. For time varying fields the condition

∇.A +
1

c2

∂Φ

∂t
= 0

is often convenient, this is called the Lorentz gauge (obviously the Lorentz gauge reduces
to the Coulomb gauge when Φ is independent of t). For any potentials (Φ,A) it is always
possible to find a Λ so that (Φ′,A′) satisfy the Lorentz gauge condition, since

∇.A′+
1

c2

∂Φ′

∂t
= ∇.A+∇2Λ +

1

c2

∂Φ′

∂t
− 1

c2

∂2Λ

∂t2
⇒ ∇2Λ− 1

c2

∂2Λ

∂t2
= −∇.A− 1

c2

∂Φ′

∂t
.

The last equation here is just the inhomogeneous wave-equation for Λ, with a source
f(r, t) := −∇.A− 1

c2

∂Φ′

∂t , and this equation can always be solved to find Λ so that (Φ′,A′)
satisfy the Lorentz gauge condition.

However, even the Lorentz gauge condition does not completely remove the ambiguity
in (Φ,A), for example if (Φ,A) satisfy the Lorentz gauge condition then

A → A +∇λ, Φ → Φ− ∂λ

∂t

* The name is historical and, from a modern perspective, is rather inappropriate, but
nevertheless it has stuck.
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do too, provided λ satisfies the wave equation, −∇2λ+ 1
c2

∂2λ
∂t2

= 0. This residual ambiguity
in Φ and A does not affect any of the following analysis.

In terms of Φ and A two of Maxwell’s equations are automatic,

B = ∇×A ⇒ ∇.B = 0

E = −∇Φ− ∂A

∂t
⇒ ∇×E = −∂B

∂t

so we only need worry about the equations that involve sources ρ and J. In the vacuum
with ǫ = ǫ0 and µ = µ0*

∇.E =
ρ

ǫ0
⇒ −∇2Φ− ∂(∇.A)

∂t
=

ρ

ǫ0

∇×B− 1

c2

∂E

∂t
= µ0J ⇒ ∇(∇.A)−∇2A +

1

c2

∂(∇Φ)

∂t
+

1

c2

∂2A

∂t2
= µ0J.

In the Lorentz gauge 1
c2

∂Φ
∂t = −∇.A these reduce to the inhomogeneous wave-equations

−∇2Φ +
1

c2

∂2Φ

∂t2
=

ρ

ǫ0
, −∇2A +

1

c2

∂2A

∂t2
= µ0J.

In particular in a source free region of space, where ρ = 0 and J = 0, the potentials satisfy
the wave equation

−∇2Φ +
1

c2

∂2Φ

∂t2
= 0, −∇2A +

1

c2

∂2A

∂t2
= 0

and there will be wave-like solutions.

Radiation from Simple Systems

We shall now study the electromagnetic radiation produced by an oscillating distri-
bution of charges and currents, using the method of Greens function. For simplicity we
shall work in a vacuum and ǫ = ǫ0 and µ = µ0. In statics we solved

∇.E = −∇2Φ =
ρ

ǫ0

∇×B = −∇2A = µ0J (in the Coulomb gauge, ∇.A = 0)

in a volume V using Green functions which satisfy −∇2G(r, r′) = δ(r− r′). For example,
if V is unbounded space, G(r, r′) = 1

4π|r−r′|
gives

Φ(r) =
1

ǫ0

∫

V

ρ(r′)G(r, r′)dV ′ =
1

4πǫ0

∫

V

ρ(r′)

|r− r′|dV ′

A(r) = µ0

∫

V

J(r′)G(r, r′)dV ′ =
µ0

4π

∫

V

J(r′)

|r− r′|dV ′.

* This whole analysis works equally well in a linear medium with ǫ0 → ǫ, µ0 → µ and
c → v everywhere in the equations.
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In a dynamical situation, using the Lorentz gauge, we must solve

−∇2Φ +
1

c2

∂2Φ

∂t2
=

ρ

ǫ0

−∇2A +
1

c2

∂2A

∂t2
= µ0J (31).

Our strategy will again be to find suitable Green functions, but first we eliminate the time
derivatives by using Fourier transforms. Define Fourier amplitudes

Φ̃(r, ω) =

∫ ∞

−∞

Φ(r, t)eiωtdt

Ã(r, ω) =

∫ ∞

−∞

A(r, t)eiωtdt,

assuming the integrals exist. Given Φ̃(r, ω) and J̃(r, ω) the original charge and current
densities can be re-constructed using the inverse transforms

Φ(r, t) =
1

2π

∫ ∞

−∞

Φ̃(r, ω)e−iωtdω A(r, t) =
1

2π

∫ ∞

−∞

Ã(r, ω)e−iωtdω.

Multiplying (31) by eiωt, integrating over all t and equating the integrands gives

−
(
∇2 +

ω2

c2

)
Φ̃ =

ρ̃

ǫ0
, −

(
∇2 +

ω2

c2

)
Ã = µ0J̃,

where

ρ̃(r, ω) =

∫ ∞

−∞

ρ(r, t)eiωtdt, J̃(r, ω) =

∫ ∞

−∞

J(r, t)eiωtdt,

are the Fourier transforms of the charge and current densities. The problem is now reduced
to finding Green functions Gk(r, r′) for the operator −(∇2 + k2

)
, called the Helmholtz

operator,
−(∇2 + k2

)
Gk(r, r′) = δ(r− r′)

where k = ω/c.
If V is unbounded space we can expect, from translational invariance, that Gk(r, r′)

should depend only on the difference R = r − r′, Gk(R). Similarly rotational invariance
implies that Gk(R) should depend only on R = |R| and not on its direction, so there will
be no angular dependence. Expressing ∇2 in 3-dimensional polar co-ordinates, with the
origin taken to R = 0, we therefore have

∇2Gk(R) =
1

R

(
d2(RGk)

dR2

)
⇒ 1

R

(
d2(RGk)

dR2
+ k2(RGk)

)
= δ(R).

If R 6= 0 (
d2

dR2
+ k2

)
(RGk) = 0
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which has two linearly independent solutions which we denote by G±k ,

RG±k = C±e±ikR,

where C± are constants. When k = 0 the Helmholtz operator reduces to the Laplace
operator, that we studied in the electrostatics section, with Green function 1/4πR, so we
can fix the normalisation

Gk(R) −→
k→0

G0(R) =
C±
R

=
1

4πR
.

So we choose C± = 1/4π and set*

G±k (R) =
e±ikR

4πR
=

e±i ω

c
R

4πR
.

The method of Green functions therefore leads to two linearly independent solutions in
unbounded space for any given ρ(r, t and J(r, t),

Φ̃±(r, ω) =
1

4πǫ0

∫

V

ρ̃(r, ω)

|r− r′|e
±i ω

c
|r−r

′|dV ′, Ã±(r, ω) =
µ0

4π

∫

V

J̃(r, ω)

|r− r′|e
±i ω

c
|r−r

′|dV ′.

These reduce to the static result when ω = 0. The inverse Fourier transforms give

Φ±(r, t) =
1

4πǫ0

1

2π

∫ ∞

−∞

(∫

V

ρ̃(r, ω)

|r− r′|e
±i ω

c
|r−r

′|dV ′
)

e−iωtdω

=
1

4πǫ0

∫

V

1

|r− r′|

(
1

2π

∫ ∞

−∞

ρ̃(r′, ω)e±i ω

c
|r−r

′|−iωtdω

)
dV ′

=
1

4πǫ0

∫

V

ρ(r′, t±)

|r− r′| dV ′,

A±(r, t) =
µ0

4π

1

2π

∫ ∞

−∞

(∫

V

J̃(r′, ω)

|r− r′| e
±i ω

c
|r−r

′|dV ′

)
e−iωtdω

=
µ0

4π

∫

V

1

|r− r′|

(
1

2π

∫ ∞

−∞

J̃(r′, ω)e±i ω

c
|r−r

′|−iωtdω

)
dV ′

=
µ0

4π

∫

V

J̃(r′, t±)

|r− r′| dV ′,

* More generally we can take any linear combination

Gk(R) =
1

R

(
C+eikR + C−e−ikR)

as a Green function, provided C++C− = 1/4π. As an exercise check, given that∇2(1/R) =
−4πδ(R), that (∇2 + k2)(e±ikR/R) = −4πδ(R).
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where t∓ := t∓ 1
c |r− r′|. To summarise

∣∣∣∣∣∣∣∣∣∣∣∣

Φ±(r, t) =
1

4πǫ0

∫

V

ρ(r′, t∓)

|r− r′| dV ′,

A±(r, t) =
µ0

4π

∫

V

J̃(r′, t∓)

|r− r′| dV ′.

∣∣∣∣∣∣∣∣∣∣∣∣

These formulae have a very simple physical interpretation: Φ+(r, t) at the field point r

depends on ρ(r′, t−) at the source point r′ not as it is at time t but as it was at time
t− = t − |r − r′|/c, because it takes a finite time |r − r′|/c for information, moving at
the speed of light, about the charge distribution at r′ to reach the point r. Φ+ and A+

are called retarded potentials, because of this time-lag. The second set of solutions, Φ−

and J−, correspond to the fields at r being influenced by what the charge and current
distributions will be at the time t+ = t + |r − r′|/c in the future, Φ− and J− are called
advanced potentials. We shall restrict our attention to retarded potentials from now on.*

Multipole expansions

In principle the retarded potentials can be obtained by doing the integrals†

Φ̃(r, ω) =
1

4πǫ0

∫

V

ρ̃(r′, ω)

|r− r′| e
ik|r−r

′|dV ′, Ã(r, ω) =
µ0

4π

∫

V

J̃(r′, ω)

|r− r′| e
ik|r−r

′|dV ′,

for given ρ and J but, as in statics, this is often not possible analytically so we resort to
a multipole approximation. We shall concentrate on a single frequency ω and consider, in
complex notation, a charge and current distribution

ρ(r, t) = ρ̃(r)e−iωt, J(r, t) = J̃(r)e−iωt, (32)

where ρ̃(r) and J̃(r) are a static, possibly complex, charge and current density.‡ Their
Fourier transforms are

ρ̃(r, ω′) =

∫ ∞

−∞

ρ(r, t)eiω′tdt =

∫ ∞

−∞

ρ̃(r)ei(ω′−ω)tdt = 2πδ(ω − ω′)ρ̃(r),

J̃(r, ω′) =

∫ ∞

−∞

J(r, t)eiω′tdt =

∫ ∞

−∞

J̃(r)ei(ω′−ω)tdt = 2πδ(ω − ω′)J̃(r),

and for simplicity we shall omit the δ-functions and just use ρ̃(r) and J̃(r) where it is

understood that the angular frequency is ω. Similarly Φ̃(r) and Ã(r) are defined by

Φ̃(r, ω′) = 2πδ(ω − ω′)Φ̃(r) and Ã(r, ω′) = 2πδ(ω − ω′)Ã(r)

* Advanced potentials are important in the theory of relativistic quantum mechanics,
where they are related to the existence of anti-particles.
† From now on we shall only consider retarded potentials and omit the superscript +.
‡ As before the physical charge and current densities are the real parts of these.
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so

Φ̃(r) =
1

4πǫ0

∫

V

ρ̃(r′)

|r− r′|e
ik|r−r

′|dV ′, Ã(r) =
µ0

4π

∫

V

J̃(r′)

|r− r′|e
ik|r−r

′|dV ′. (33)

We shall now show that, when ω 6= 0, Φ̃(r) and Ã(r) are not independent — we can

derive Φ̃(r) from Ã(r) using conservation of charge (17), which also follows from Maxwell’s
equations

∇×B− 1
c2 Ė = µ0J

∇.E = ρ
ǫ0

⇒ ∇.J = − 1

µ0c2
∇.Ė = −ρ̇,

since ∇.(∇×B) = 0. The time dependence in (32) gives

∇.J = iωρ ⇒ ρ̃ = − i

ω
∇.J̃.

Hence

Φ̃(r, ω) =
1

4πǫ0

∫

V

ρ̃(r′)

|r− r′|e
ik|r−r

′|dV ′ = − i

4πǫ0ω

∫

V

(
∇′.J̃(r′)

)

|r− r′| eik|r−r
′|dV ′

=
i

4πǫ0ω

∫

V

J̃(r′).∇′
(

eik|r−r
′|

|r− r′|

)
dV ′ = − i

4πǫ0ω
∇.

(∫

V

J̃(r′)
eik|r−r

′|

|r− r′| dV ′

)

=− ic2

ω
∇.A(r)

where we have integrated by parts and assumed that there is no flux of current through
the bounding surface of V . This is in fact just the Lorentz gauge condition again

Φ̃(r) = − ic2

ω
∇.Ã(r) ⇒ ∇.Ã(r)− iω

c2
Φ̃(r) = 0 ⇒ ∇.A(r, t) +

1

c2
Φ̇(r, t) = 0.

The multipole expansion follows from a Taylor expansion: in Cartesian co-ordinates,
xi, expanding around r′ = 0 and using the fact that ∂

∂x′

i

= − ∂
∂xi

when acting on a function
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of |r− r′|,

eik|r−r
′|

|r− r′| =
eikr

r
+

3∑

i=1

x′i

[
∂

∂x′i

(
eik|r−r

′|

|r− r′|

)]

r
′=0

+
1

2

3∑

i,j=1

x′ix
′
j

[
∂2

∂x′i∂x′j

(
eik|r−r

′|

|r− r′|

)]

r
′=0

+ . . .

=
eikr

r
−

3∑

i=1

x′i
∂

∂xi

(
eikr

r

)
+

1

2

3∑

i,j=1

x′ix
′
j

∂2

∂xi∂xj

(
eikr

r

)
+ . . .

=
eikr

r
− eikr

3∑

i=1

x′i

(
ik

xi

r2
− xi

r3

)

+
eikr

2

3∑

i,j=1

x′ix
′
j

[
ikxj

r

(
ik

xi

r2
− xi

r3

)
+ δij

(
ik

r2
− 1

r3

)
+ xi

(
3xj

r5
− 2ik

xj

r4

)]
+ . . .

=
eikr

r
+

eikr

r3
(1− ikr)

3∑

i=1

x′ixi

+
eikr

2r5

3∑

i,j=1

[
xixj{3(1− ikr)− k2r2} − δijr

2(1− ikr)
]
x′ix

′
j + . . .

Using this expansion in (33) gives

Φ̃(r) =
eikr

4πǫ0





Q̃

r
+

(1− ikr)

r3
(Q̃.r) +

3∑

i,j=1

xixj

2r5

[
(1− ikr)

(
3q̃ij − δijTr(q̃)

)
− k2r2q̃ij

]



 + . . .

Ãi(r) =
µ0e

ikr

4π





1

r

∫

V

J̃i(r
′)dV ′ +

(1− ikr)

r3

3∑

j=1

xj

[∫

V

x′j J̃i(r
′)dV ′

]
+ . . .



 ,

where

Q̃ =

∫

V

ρ̃(r′)dV ′, Q̃ =

∫

V

r′ρ̃(r′)dV ′ and q̃ij =

∫

V

x′ix
′
j ρ̃(r′)dV ′

are the multipole moments and Tr(q̃) =
∑3

i=1 q̃ii.* In fact conservation of charge forces

Q̃ = 0 since

Q̃ =

∫

V

ρ̃(r′)dV ′ = − i

ω

∫

V

∇′.J(r′)dV ′ = − i

ω

∫

S

J̃(r′).dS′ = 0

if there is no flux of current through the surface S bounding V .

* Small q̃ij is used here for the quadrupole moment because a capital Qij was used in

the electrostatics section to denote the traceless part of the quadrupole moment, Q̃ij =
1
2

∫
V

(3x′ix
′
j − δijr

′2)ρ̃(r′)dV ′.
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As mentioned earlier Φ̃ and Ã are not independent. From charge conservation, ∇.J̃ =
iωρ̃, we have

∫

V

J̃i(r
′)dV ′ =

3∑

j=1

∫

V

∂

∂x′j

(
x′iJ̃j(r

′)
)
dV ′ −

∫

V

x′i
(
∇′.J̃(r′)

)
dV ′

= −iω

∫

V

x′iρ̃(r′)dV ′ = −iωQi

where again it has been assumed that there is no flux of current through the surface
bounding V , so

3∑

j=1

∫

V

∂

∂x′j

(
x′iJ̃j(r

′)
)
dV ′ =

3∑

j=1

∫

S

(
x′iJ̃j(r

′)
)
dS′j = 0

from the divergence theorem.
Also

∫

V

x̃′jJi(r
′)dV ′ =

3∑

k=1

∫

V

∂

∂x′k

(
x′ix

′
j J̃k(r′)

)
dV ′ −

∫

V

x′iJj(r
′)dV ′ −

∫

V

x′ix
′
j

(
∇′.J̃(r′)

)
dV ′

=−
∫

V

x′iJj(r
′)dV ′ − iω

∫

V

x′ix
′
j ρ̃(r′)dV ′ = −

∫

V

x′iJj(r
′)dV ′ − iωq̃ij

⇔
∫

V

x̃′jJi(r
′)dV ′ =

1

2

∫

V

(
x̃′jJi(r

′)− x′iJj(r
′)
)
dV ′ − iω

2
q̃ij .

The first term on the right hand side is anti-symmetric under interchange of the indices i
and j and is called the magnetic dipole moment, it is equivalent to the vector

m̃ =
1

2

∫

V

r′ × J̃(r′)dV ′,

while the second term is the electric quadrupole moment and is symmetric under inter-
change of i and j. Using these expressions

Φ̃(r) =
1

4πǫ0
eikr



 (1− ikr)

r3
(Q̃.r) +

(1− ikr)

r5

3∑

i,j=1

xixj

(
Q̃ij −

1

2
k2r2q̃ij

)
+ . . .





Ãi(r) =
µ0

4π
eikr


− iω

r
Q̃i +

(1− ikr)

r3



(m̃× r)i −

iω

2

3∑

j=1

xj q̃ij



 + . . .


 .

The three terms that are explicit on the right hand side of Ãi here are referred to re-
spectively as the electric dipole term, Q̃i, the magnetic dipole term, m̃i and the electric
quadrupole term, Q̃ij . In a time independent situation, ω = 0, k = 0, the electric dipole
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and quadrupole terms vanish leaving the familiar magnetic dipole term from statics (18).

As an exercise you may wish to check that indeed ∇.Ã(r) = i ω
c2 Φ̃(r).

Electric Dipole Radiation

To understand how these kinds of potentials can lead to radiation we shall examine
the electric dipole term as an example. So consider

Ã(r) = −i
µ0ωeikr

4π

Q̃

r
.

Using ∇r = r/r := n, the unit vector in the radial direction,

B̃(r) = ∇× Ã(r) = −i
µ0ωeikr

4π

(
ikn

r
− n

r2

)
× Q̃ =

µ0k
2c

4π

eikr

r

(
1 +

i

kr

)
(n× Q̃).

The electric field can be evaluated either from Ẽ = −∇Φ̃ + iωÃ directly or by observing
that Maxwell’s equation

∇×B = µ0ǫ0Ė ⇒ Ẽ =
ic2

ω
∇× B̃ =

ic

k
∇× B̃

and

∇×
(

n× Q̃

r

)
= ∇×

(
r× Q̃

r2

)
= −2{n× (r× Q̃)}

r3
+

1

r2
∇× (r× Q̃)

= −2{n× (r× Q̃)}
r3

− (∇.r)

r2
Q̃ +

1

r2
(Q̃.∇)r = −2{n× (r× Q̃)}

r3
− 2

r2
Q̃ = −2

n(n.Q̃)

r2

so

B̃ =
k2

4πǫ0c
eikr

(
1 +

i

kr

)
(n× Q̃)

r

⇒ Ẽ =
ic

k

k2

4πǫ0c
eikr

[{
ik

(
1 +

i

kr

)
− i

kr2

}
n× (n× Q̃)

r
− 2

(
1 +

i

kr

)(
n(n.Q̃)

r2

)]

= − k2

4πǫ0
eikr

[{
1 +

i

kr

(
1 +

i

kr

)}
n× (n× Q̃)

r
+

2i

k

(
1 +

i

kr

)(
n(n.Q̃)

r2

)]

= − k2

4πǫ0

eikr

r

[
n× (n× Q̃) +

i

kr

(
1 +

i

kr

){
3n(n.Q̃)− Q̃

}]
.

Note that Ẽ.B̃ = 0. These expressions are rather involved in general and it is instructive
to examine two special limits:

i) The near zone, kr << 1 so r is small,

B̃ =
ik

4πǫ0c

n× Q̃

r2
, Ẽ =

1

4πǫ0

3n(n.Q̃)− Q̃

r3
,
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where the electric field dominates.
ii) The far zone, kr >> 1 so r is large,

B̃ =
k2

4πǫ0c

eikr

r
(n× Q̃), Ẽ = −c(n× B̃),

where the electric and magnetic fields both fall off like 1/r. Remember that this is a
multipole expansion and these expression are only accurate when r is much greater
than the largest dimension of the volume containing the charges and currents.

The physical electric and magnetic fields are then the real parts

E = ℜ(Ẽe−iwt) B = ℜ(B̃e−iwt).

The far zone is particularly important for understanding radiation a long way away from
the sources where the energy flux, averaged over a cycle of period 2π/ω, is given by (29)

S̄ =
1

2µ0
ℜ(Ẽ× B̃∗) =

1

2µ0

1

(4πǫ0)2
k4

cr2
{(n× Q̃)× n} × (n× Q̃∗)

=
k4c

2(4π)2ǫ0

1

r2
{(Q̃× n).(Q̃∗ × n)}n.

The energy flux is therefore purely radial, in the n direction, and falls off like 1/r2.

Now suppose, for example, that the complex vector Q̃ has the same complex phase
for each component, i.e. Q̃ = eiαQ̃0 where Q̃0 is a real vector. In this particular case

S̄ =
k4c

2(4π)2ǫ0

Q̃2
0 sin2 θ

r2
n (34)

where θ is the angle between Q̃0 and r and Q̃2
0 = Q̃0.Q̃0. Most of the energy is radiated

in the direction θ = π/2, that is perpendicular to the direction of Q̃0 and none is radiated

parallel to Q̃0.

n

0

~ θ
Q
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The total time-averaged power radiated, P̄, is the integral of the energy flux through
a sphere surrounding the dipole. Taking a sphere with large radius and using the radiation
zone expressions for E and B

P̄ =
k4c Q̃2

0

2(4π)2ǫ0

∫ 2π

0

∫ π

0

(
sin2 θ

r2

)
r2 sin θdθdφ =

k4c Q̃2
0

2(4π)2ǫ0

∫ 2π

0

∫ 1

−1

(1− u2)du =
k4c Q̃2

0

12πǫ0
,

where u = cos θ. So the total power radiated through a sphere of large radius is

P̄ =
ω4Q̃2

0

12πǫ0c3
=

Q̈2
0

12πǫ0c3
, (35)

proportional to the square of the second derivative of Q̃0 with respect to time.

Example: centre-fed linear antenna

A model for an antenna transmitting radio-waves is two collinear straight cylindrical
rods of length d with constant circular cross-section made of some conducting material
with an alternating current fed into a small gap between them (hence centre-fed).

AC generator

n

d

d

y

x

z

We model the current as an oscillating function which decreases linearly (hence linear)
from a maximum amplitude I0 at the centre to zero at the end of the rods. Place the rod
so as to be aligned along the z-axis with the central gap at the origin, then the physical
current is the real part of

I(z, t) =

{
I0

(
1− |z|

d

)
e−iωt, |z| ≤ d

0, |z| > d.

Assuming the current density in the rods is independent of position, define J0 by

I0 = J0∆A,
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where ∆A is the cross-sectional area of the rods. Then we define a complex current density
inside the antenna

J =
I0

∆A

(
1− |z|

d

)
e−iωtẑ, −d ≤ z ≤ d

while J = 0 outside the rods. Now

∇.J = ± I0

∆Ad
e−iωt

and conservation of charge
∇.J = −ρ̇

then implies a charge density, ρ(r, t) = ρ̃(r)e−iωt, with

ρ̃(r) = ± iI0

ωd∆A

inside the antenna (plus for 0 < z ≤ d and minus for −d ≤ z < 0) while ρ̃ vanishes outside
the antenna. We can define a charge per unit length

λ̃ = ρ̃∆A = ± iI0

ωd

giving a dipole moment

Q̃z =

∫ d

−d

zλ̃(z)dz =
iI0

ωd

(∫ d

0

zdz −
∫ 0

−d

zdz

)
=

2iI0

ωd

∫ d

0

zdz =
iI0d

ω
,

while Q̃x = Q̃y = 0, so

Q̃.Q̃∗ = Q̃2
0 =

(
I0d

ω

)2

.

The time-averaged energy flux for r >> d is now given by (34) to be

S̄ =
ω4

2(4π)2ǫ0c3
Q̃2

0

sin2 θ

r2
n =

(ωI0d)2

32π2ǫ0c3

sin2 θ

r2
n.

The time-averaged power radiated through a large sphere with the antenna at the centre
and r >> d is now given by (35) to be

P̄ =
(ωI0d)2

12πǫ0c3
.

This is proportional to ω2, so higher frequencies radiate more power for a given current I0.
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Example: rotating dipole

Our next example is a dipole of constant magnitude, rotating around an axis at a
constant angle α to Q. Choose the axis of rotation to be the z-axis with

Q = Q0 sinα
(
cos(ωt)x̂± sin(ωt)ŷ

)
+ Q0 cos α ẑ = Q0 sin αℜ

{
(x̂∓ iŷ)e−iωt

}
+ Q0 cos α ẑ.

α

t
n

θ

z

y

x

Q

φ

ω

The last term on the right hand side is independent of time and will not radiate, so
we can determine the radiation by focusing on

Q̃ = Q0 sin α(x̂∓ iŷ).

Expressing the unit radial vector r/r = n in Cartesians,

n = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,

we can determine the Poynting vector from

Q̃× n = Q0 sin α
{
(sin θ sin φ± i sin θ cos φ)ẑ + (− cos θ)ŷ ∓ i cos θ x̂

}

⇒ (Q̃× n).(Q̃× n)∗ = (sin2 θ + 2 cos2 θ)Q2
0 sin2 α = (1 + cos2 θ)Q2

0 sin2 α

giving

S̄ =
ω4Q2

0 sin2 α(1 + cos2 θ)

32π2ǫ0c3r2
n

in the radiation zone kr >> 1. The radiation is most intense in the direction of the axis
of rotation, the z-axis when θ = 0 or π, but there is still some radiation (half the intensity
of that along the z-axis) in the direction perpendicular to the axis of rotation, θ = π/2.
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θ

α

ωt

z

Q

n

Time-averaged energy flux from a rotating dipole.

The time-averaged power is then

P̄ =
ω4Q2

0 sin2 α

16πǫ0c3

∫ π

0

(1 + cos2 θ) sin2 dθ =
ω4Q2

0 sin2 α

16πǫ0c3

∫ 1

−1

(1 + u2)du =
ω4Q2

0 sin2 α

6πǫ0c3
.

Thus a rotating electric dipole radiates a time-averaged power proportional to the fourth
power of the frequency.

A rotating magnetic dipole with

m = m0(cos ωtx̂− sin ωtŷ) sinα + m0 cos αẑ,

so m.m = m2
0, leads to almost the same expression, except ǫ0 → 1/µ0,

P̄ =
ω4m2

0µ0 sin2 α

6πc3
.

A pulsar is a rotating neutron star with a magnetic dipole that is not aligned with the
axis of rotation and this expression gives the time-averaged power radiated by a pulsar in
electromagnetic (radio) waves. This loss of energy makes pulsars spin down with time.

6. Relativistic Formulation of Electromagnetism

From the special theory of relativity the Lorentz transformations between two inertial
co-ordinates systems* (ct, x, y, z) and (ct′, x′, y′, z′), written in matrix form, is




ct′

x′

y′

z′


 =




γ(v) −γ(v) v
c 0 0

−γ(v) v
c

γ(v) 0 0
0 0 1 0
0 0 0 1







ct
x
y
z


 (36)

* We take the x, y and z-axis aligned with the x′, y′ and z′-axis respectively and the
origins (x, y, z) = (0, 0, 0) and (x′, y′, z′) = (0, 0, 0) co-incising at t = t′ = 0.
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where γ(v) = 1/
√

1− v2/c2. Equivalently, using an index notation xµ′

= (ct′, x′, y′, z′)
and xµ = (ct, x, y, z) with µ = 0, 1, 2, 3,

xµ′

=
3∑

ν=0

Lµ′

ν(v)xν

where Lµ′

ν(v) are the components of the 4 × 4 matrix in (36). Note that, as a matrix,
L(−v) = L−1(v). Denote four dimensional vectors (4-vectors) by U

˜
, with components Uµ

in the xµ co-ordinate system and Uµ′

in the x′µ co-ordinate system so

Uµ′

=

3∑

ν=0

Lµ′

ν(v)Uν .

Then an invariant “length squared” of U
˜

, denoted by a dot product U
˜

.U
˜

, can be defined
by first introducing a matrix

η =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and defining

Uµ :=
3∑

ν=0

ηµνUν ⇒ (U0, U1, U2, U3) = (−U0, U1, U2, U3).

Also

Uµ =

3∑

ν=0

(
η−1

)µν
Uν

where η−1 is the inverse matrix to η (in fact η−1 = η since η2 = 1). With this notation

U
˜

.U
˜

:= −
(
U0

)2
+
(
U1

)2
+
(
U2

)2
+
(
U3

)2
= −

(
U0

)2
+U.U =

3∑

µ,ν=0

ηµνUµUν =

3∑

ν=0

UνUν ,

where the 3 dimensional vector (3-vector) U has components (U1, U2, U3) in the xµ co-
ordinate system and (U ′1, U ′2, U ′3) in the xµ′

co-ordinate system.* Note that U
˜

.U
˜

can be

positive, negative or zero depending on whether
(
U0

)2
> U.U (time-like vector),

(
U0

)2
<

U.U (space-like vector) or
(
U0

)2
= U.U. (light-like or null vector).

* Note that U has no Lorentz invariant meaning, it is a different 3-vector in different
reference frames. As an exercise, check that U

˜
.U
˜

is the same in both reference frames but
U.U is not.
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In this notation the differential form of charge conservation

∂ρ

∂t
+∇.J =

∂ρ

∂t
+

3∑

i=1

∂iJ
i = 0,

where ∂i = ∂/∂xi, can be written succinctly by defining a 4-vector J
˜
, with components

Jµ = (cρ, J1, J2, J3)

in the xu co-ordinates, so that

∂ρ

∂t
+

3∑

i=1

∂iJ
i = c

(
1

c

∂ρ

∂t

)
+

3∑

i=1

∂iJ
i =

3∑

µ=0

∂Jµ

∂xµ
=

3∑

µ=0

∂µJµ = 0,

where ∂µ = ∂/∂xµ. The 4-vector J
˜

is called the 4-current.
Compare this with the wave equations for the potentials that follow from Maxwell’s

equations, with µ = µ0, ǫ = ǫ0 and c2 = 1/ǫ0µ0 in the Lorentz gauge ∇.A + 1
c2

∂Φ
∂t = 0,

∇2Φ− 1

c2

∂2Φ

∂t2
= − 1

ǫ0
ρ = −µ0c

2ρ

∇2A− 1

c2

∂2A

∂t2
= −µ0J.

Combining cρ and J into a 4-vector then implies that it is also natural to combine Φ/c
and A into a 4-potential

Aµ = (Φ/c, A1, A2, A3)

which satisfies (
∇2 − 1

c2

∂2

∂t2

)
A
˜

=
3∑

µ,ν=0

(
η−1

)µν
∂µ∂νA

˜
= −µ0J

˜
,

Denote by the second order differential operator

=

(
∇2 − 1

c2

∂2

∂t2

)
,

called the wave operator, or sometimes the d’Alembertian, then Maxwell’s equations imply

A
˜

= −µ0J
˜
.

In this notation the Lorentz gauge condition is

3∑

µ=0

∂µAµ = 0.
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What about the electric and magnetic fields themselves?

E = −∇Φ− ∂A

∂t
⇒ Ei = −c

∂A0

∂xi
− c

∂Ai

∂x0
= c

(
∂iA0 − ∂0Ai

)

(note the sign change A0 = −A0) and

B = ∇×A ⇒ Bi =
1

2

3∑

j,k=1

ǫijk

(
∂Ak

∂xj
− ∂Aj

∂xk

)
=

1

2

3∑

j,k=1

ǫijk
(
∂jAk − ∂kAj

)
,

where ǫijk is defined to be

ǫijk = ei.(ej × ek)

with
{
e1, e1, e1

}
a right-handed orthonormal basis.*

The 6 components of E and B can be combined into an anti-symmetric 4× 4 matrix
with components

Fµν = ∂µAν − ∂νAµ (37)

with Fµν = −Fνµ. Then Ei/c = Fi0 and Fjk =
∑3

k=1 ǫijkBk and, as a matrix,

Fµν =




0 −E1/c −E2/c −E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


 .

The electric and magnetic fields are different to other 3-dimensional vectors that you have
met in this regard. In relativity 3-momentum P is combined with energy E into the the
4-momentum P

˜
= (E/c,P) and current density J is combined with the charge density ρ

into the 4-current (ρc,J). E and B do not become 4-vectors in relativity, they are the
components of the anti-symmetric matrix Fµν which is called the electromagnetic field

tensor. Sometimes it is convenient to ‘raise’ the indices on Fµν using η−1 thus, using a
shorthand notation ηµν = (η−1)µν ,

Fµν =

3∑

ρ,σ=0

ηµρηνσFρσ =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0


 ,

* This is shorthand way of writing the components of a vector product: there are 33 = 27
different possibilities for ǫijk but 21 of these are zero (if any two of i, j or k are the same)
so i, j and k must all be different leaving 6 possibilities, ǫ123 = ǫ231 = ǫ312 = +1 and
ǫ213 = ǫ132 = ǫ321 = −1.
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or even just raise one index,

Fµ
ν =

3∑

ρ=0

ηµρFρν =




0 E1/c E2/c E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0




or

Fµ
ν =

3∑

σ=0

ηνσFµσ =




0 −E1/c −E2/c −E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0.




Be careful of these signs, the notation of upper and lower indices is adopted here to
account for the minus signs that arise in special relativity. A zero superscript always has
the opposite sign to a zero subscript but there is no practical difference between an upper
1, 2, or 3 or a lower 1,2 or 3.

Maxwell’s equations are now seen to be related to

3∑

µ=0

∂µFµν =

3∑

µ=0

∂µ

(
∂µAν

)
−

3∑

µ=0

∂µ

(
∂νAµ

)
= Aν − ∂ν

(
3∑

µ=0

(
∂µAµ

)
)

= Aν = −µ0J
ν

(in the Lorentz gauge, note the sign change ∂µ =
∑3

ν=0 ηµν∂ν so ∂µ = (−∂0, ∂1, ∂2, ∂3)).
So the two Maxwell’s equations involving sources

∇×B +
1

c2
Ė = µ0J, ∇.E =

ρ

ǫ0

are combined in a relativistic formulation into

3∑

µ=0

∂µFµν = −µ0Jν

(4 equations, one for each value of ν).
What about the other Maxwell’s equations

∇×E− ∂B

∂t
= 0, ∇.B = 0 ?

Consider the combination

∂µFνρ + ∂νFρµ + ∂ρFµν =
1

2

(
∂µFνρ + ∂νFρµ + ∂ρFµν − ∂µFρν − ∂νFµρ − ∂ρFνµ

)

with µ, ν and ρ all different. There are 4× 3× 2 = 24 possibilities, but only 4 of these are
independent because, up to a sign, it does not matter what order the three indices are put
in. With the choice µ = 1, ν = 2 and ρ = 3 this is

∂1B1 + ∂2B2 + ∂3B3 = ∇.B,
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with µ = 0, ν = 1 and ρ = 2 it is

1

c

∂B3

∂t
+ ∂1

(
E2

c

)
+ ∂2

(−E1

c

)
=

1

c
(∇×E)3 +

1

c

∂B3

∂t
,

with µ = 0, ν = 2 and ρ = 3 it is

1

c

∂B1

∂t
+ ∂2

(
E3

c

)
+ ∂3

(−E2

c

)
=

1

c
(∇×E)1 +

1

c

∂B1

∂t
,

with µ = 0, ν = 3 and ρ = 1 it is

1

c

∂B2

∂t
+ ∂3

(
E1

c

)
+ ∂1

(−E3

c

)
=

1

c
(∇×E)2 +

1

c

∂B2

∂t
.

Introducing the shorthand notation

∂[µFνρ] :=
1

3!

(
∂µFνρ + ∂νFρµ + ∂ρFµν − ∂µFρν − ∂νFµρ − ∂ρFνµ

)

when µ, ν and ρ are all different* we have

∇×E− ∂B

∂t
= 0, ∇.B = 0 ⇔ ∂[µFνρ] = 0.

In fact
∂[µFνρ] = 0

is an automatic consequence of the fact that Fµν can be derived from the potential Aµ,
Fµν = ∂µAν − ∂νAµ, provided only that Aµ is at least twice differentiable.

In summary, Maxwell’s equations can be written in a relativistic formulation as

∣∣∣∣∣∣∣∣∣∣∣

3∑

µ=0

∂µFµν = −µ0J
ν

∂[µFνρ] = 0,

∣∣∣∣∣∣∣∣∣∣∣

with Jµ = (cρ,J).

* The notation [µνρ] indicates that the three indices appear with all six possible per-
mutations, with a plus sign for the three even permutations of the indices (i.e µνρ, νρµ
and ρµν) and a minus sign for the three odd permutations (i.e µρν, νµρ and ρνµ). Such
a linear combination is said to be anti-symmetrised under permutations.
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Gauge invariance.

In relativistic notation the gauge transformation (30) can be written

A′µ = Aµ + ∂µΛ

where Λ(xµ) is a differentiable function. Then the components of the electromagnetic field
tensor are invariant

F ′µν = ∂µA′ν − ∂νA′µ = ∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ = ∂µAν − ∂νAµ = Fµν .

This is like a 4-dimensional version of the 3-dimensional analysis for B,

B = ∇×A and A′ = A +∇Λ ⇒ B′ = B since ∇×∇Λ = 0.

Indeed Fµν is like a 4-dimensional ‘curl’ of Aµ.

Lorentz transformations

In this section we shall discuss how E and B transform under Lorentz transformations.
To simplify notation let β = v/c and γ(β) = 1/

√
1− β2. Then

xµ′

=
3∑

ν=0

Lµ′

ν(β)xν

with

Lµ′

ν(β) =




γ(β) −βγ(β) 0 0
−βγ(β) γ(β) 0 0

0 0 1 0
0 0 0 1


 .

Similarly Jµ are the components of a 4-vector so they transform as

Jµ′

=
3∑

ν=0

Lµ′

ν(β)Jν

and Aµ are the components of a 4-vector so they transform as

Aµ′

=
3∑

ν=0

Lµ′

ν(β)Aν

The ‘divergence’ of the 4-current

3∑

µ=0

∂µJµ = ∂
˜
.J
˜

= 0
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is a scalar, not a vector, and so should be invariant,

3∑

µ=0

∂µJµ =
3∑

µ′=0

∂µ′Jµ′

= 0,

charge is conserved in all reference frames. This dictates how ∂µ should transform under
Lorentz transformations, suppose

∂µ′ =
3∑

ρ=0

Mρ
µ′(β)∂ρ

for some Mρ
µ′(β) then

3∑

µ′=0

∂µ′Jµ′

=
3∑

µ′=0

(
3∑

ρ=0

Mρ
µ′∂ρ

)(
3∑

ν=0

Lµ′

νJν

)
=

3∑

ν,ρ=0





3∑

µ′=0

(
Mρ

µ′Lµ′

ν

)
∂ρJ

ν





=

3∑

ν,ρ=0

(ML)ρ
ν∂ρJ

ν =

3∑

ν=0

∂νJν

where ML is the product of the two matrices. This can only be true for any J
˜

if ML is
the identity matrix, in components (ML)ρ

ν = δρ
ν , so M(β) = L−1(β) = L(−β). Hence

Jµ′

=
3∑

ν=0

Lµ′

ν(β)Jν , ∂µ′ =
3∑

ν=0

(L−1)ν
µ′(β)∂ν .

Indeed any vector with the index as a sub-script must transform with L−1, e.g Jµ =∑3
ν=0 ηµνJν transforms as

Jµ′ =

3∑

ν=0

(L−1)ν
µ′Jν

under Lorentz transformations. Vectors that transform with L are called contra-variant

vectors (they have sub-scripts) while vectors that transform with L−1 are called co-variant

vectors (they have super-scripts). The difference again amounts to some sign differences,
since L−1(β) = L(−β).

We can now determine how Fµν , and hence E and B, transform. Since

Aµ′ =

3∑

ν=0

(
L−1

)ν
µ′

Aν and ∂µ′ =

3∑

ν=0

(
L−1

)ν
µ′

∂ν ,

we have

Fµ′ν′ = ∂µ′Aν′ − ∂ν′Aµ′ =

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′

(
∂ρAσ − ∂σAρ

)

=

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′

Fρσ..
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This can be re-written using the usual rules of matrix multiplication and the fact that L

is a symmetric matrix
(
L−1

)T
= L−1, in components

(
L−1

)ρ
µ′

=
(
L−1

)
µ′

ρ
, so

Fµ′ν′ =

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′

Fρσ =

3∑

ρ,σ=0

(
L−1

)
µ′

ρ
Fρσ

(
L−1

)σ
ν′

or, in matrix notation,

F ′ = L−1FL−1 ⇔ F = LF ′L (38)

where F is the co-variant matrix with components Fµν and F ′ is the matrix with compo-
nents Fµ′ν′ .

As an illustration of (38) consider a point charge Q at rest at the origin of the xµ′

co-ordinate system. The electric and magnetic fields in the primed frame, with components
Ei′ and Bi′ , are

E′ =
Q

4πǫ0

r′

(r′)2
, B = 0 (39)

so

F ′ =




0 −E1′/c −E2′/c −E3′/c
E1′/c 0 0 0
E2′/c 0 0 0
E3′/c 0 0 0




and

F = LF ′L

=




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







0 −E1′/c −E2′/c −E3′/c
E1′/c 0 0 0
E2′/c 0 0 0
E3′/c 0 0 0







γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




=
1

c




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







βγE1′ −γE1′ −E2′ −E3′

γE1′ −βγE1′ 0 0
γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0




=
1

c




0 −(1− β2)γ2E1′ −γE2′ −γE3′

(1− β2)γ2E1′ 0 βγE2′ βγE3′

γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0




=
1

c




0 −E1′ −γE1′ −γE2′

E1′ 0 βγE2′ βγE3′

γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0


 .
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From this we can read off the components E and B in the unprimed frame and express
them in terms of unprimed co-ordinates using the Lorentz transformation

x′ = γ(x− vt), y′ = y, z′ = z

,

E1 = E1′ =
Q

4πǫ0

x′

(r′)3
=

Q

4πǫ0

γ(x− vt)

{γ2(x− vt)2 + y2 + z2}3/2

E2 = γE2′ =
Q

4πǫ0

γ y′

(r′)3
=

Q

4πǫ0

γy

{γ2(x− vt)2 + y2 + z2}3/2

E3 = γE3′ =
Q

4πǫ0

γ z′

(r′)3
=

Q

4πǫ0

γz

{γ2(x− vt)2 + y2 + z2}3/2

B1 = 0

B2 = −βγE3′ = − Qv

4πǫ0c

γz

{γ2(x− vt)2 + y2 + z2}3/2

B3 = βγE2′ =
Qv

4πǫ0c

γy

{γ2(x− vt)2 + y2 + z2}3/2
.

Since Q is moving with velocity v = vx̂ in the unprimed frame these can be more concisely
written as

E =
Q

4πǫ0

γ(r− vt)

{γ2(x− vt)2 + y2 + z2}3/2
, B =

Q

4πǫ0c

γ(v× r)

{γ2(x− vt)2 + y2 + z2}3/2
. (40)

At t = 0 the electric field is reduced in the x-direction by a factor 1/γ2 relative to the
usual spherically symmetric Coulomb field of a stationary charge and increased in the y−z
plane by a factor of γ,

v

E
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and this picture moves to the right with constant speed v. There is a non-zero magnetic
field in the unprimed frame, because Q is moving in that frame and therefore generating
an electric current, which is everywhere perpendicular to E since E.B = 0.

Lorentz co-variance of Maxwell’s equations.

Maxwell’s equations are symmetric under Lorentz transformations, indeed this is how
Lorentz transformations were first discovered, but nevertheless E and B, and so Fµν ,
change — they are not invariant. Maxwell’s equations are said to be co-variant under
Lorentz transformations because their from is preserved even though the individual compo-
nents change. To see what this means consider the relativistic form of Maxwell’s equations
in the unprimed frame

3∑

µ=0

∂µFµν = −µ0J
ν , ∂[µFνρ] = 0.

In the primed frame

∂µ′ =

3∑

ν=0

(
L−1

)ν
µ′

∂ν , Jµ′

=

3∑

ν=0

Lµ′

νJν , and Fµ′ν′

=

3∑

ρ,σ=0

Lµ′

ρL
ν′

σF ρσ

so
3∑

µ′=0

∂µ′Fµ′ν′

=
3∑

µ,σ=0

Lν′

σ∂µFµσ = −µ0

3∑

σ=0

Lν′

σJσ = −µ0J
ν′

(a factor of L has canceled a factor L−1 in the first equation here) and

∂[µ′Fν′ρ′] =

3∑

τ,σ,ρ=0

(
L−1

)τ
[µ′

(
L−1

)σ
ν′

(
L−1

)λ
ρ′]

∂τFσρ

=
3∑

τ,σ,ρ=0

(
L−1

)τ
µ′

(
L−1

)σ
ν′

(
L−1

)λ
ρ′

∂[τFσρ] = 0.

Hence, in the primed frame, Maxwell’s equations are

3∑

µ′=0

∂µ′Fµ′ν′

= −µ0J
ν′

, ∂[µ′Fν′ρ′] = 0,

exactly the same from as in the unprimed frame, even though the individual components
are different. This is what is meant by co-variance and the statement above that Lorentz
transformations are a symmetry of Maxwell’s equations.

Since the components are different in different reference frames, it can sometimes be
difficult to see symmetries when the individual components are written out, as in equation
(40) for example. It is often useful to construct quantities that are genuinely invariant,
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i.e. they are the same in every reference frame. Such quantities can be evaluated in any
inertial reference frame and we know that we would get the same answer in any other
frame and sometimes calculations are easier in one particular frame so it is clearly easiest
to use that frame. One way of constructing invariants is to ‘contract’ indices so that there
are no free indices on our expressions. For example

3∑

µ=0

∂µJµ = 0 =
3∑

µ′=0

∂µ′Jµ′

is an invariant, it is the same in all reference frames (it happens to be zero).*
We can make an invariant out of E and B by considering the following quadratic

expression in F ,

3∑

µ,ν=0

FµνFµν = 2

3∑

i=1

F0iF
0i +

3∑

i,j=1

FijF
ij = − 2

c2
E.E +

3∑

i,j,k,l=1

(
ǫijkBk

)(
ǫijlBl

)
.

Now
∑3

i,j=1 ǫijkǫijl = 2δk
l, so the combination

1

4

3∑

µν=0

FµνFµν =
1

2

(
B.B− E.E

c2

)
=

1

2

(
B′.B′ − E′.E′

c2

)

is an invariant under Lorentz transformations, it is the same in all inertial references
frames.† As an exercise you should check this for (39) and (40).

There is in fact a second quadratic invariant that can be constructed from Fµν . To
show this we first need a 4-dimensional version of ǫijk, which we denote by ǫµνρσ. This
is defined to be zero if any of the 4 indices µ, ν, ρ or σ are the same so, of the 44 = 256
possibilities, 212 vanish and only 4! = 24 are non-zero. The non-zero ones are all defined
to be ±1 and for these {µ, ν, ρ, σ}must be some permutation of the four indices {0, 1, 2, 3}.
The permutation is called even if the sequence {µ, ν, ρ, σ} can be obtained {0, 1, 2, 3} by
an even number of interchanges of pairs and odd if {µ, ν, ρ, σ} must be obtained {0, 1, 2, 3}
by an odd number of interchanges of pairs. For example {0, 1, 2, 3}, {1, 0, 3, 2}, {0, 2, 3, 1}
and {2, 0, 1, 3} are even permutations (there are 12 in all) while {1, 0, 2, 3}, {0, 1, 3, 2},
{2, 0, 3, 1} and {1, 2, 3, 0} are odd (again there are 12 of these). Equivalently one and only
one index must be 0 for a non-zero value and

ǫ0ijk = −ǫi0jk = ǫij0k = −ǫijk0 = ǫijk,

* It is crucial that one index is up and one is down here, because only then do we get
a cancellation between L and L−1 in the primed expression

∑3
µ′=0 ∂µ′Jµ′

. If both indices
were sub-scripts, or both super-scripts, there would be no such cancellation, for example∑3

µ′=0 ∂µ′Jµ′ is not Lorentz invariant.
† This is reminiscent of the energy density stored in the electro-magnetic field, w =

1
2µ0

(
E.E
c2 + B.B

)
, but it is not the same, because of the sign difference. Energy is not

Lorentz invariant.
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with i, j, k = 1, 2 or 3, exhausts all possibilities. An important of consequence of this defi-
nition of ǫµνρσ is that it is Lorentz invariant. To see this consider the Lorentz transformed
quantity

ǫ0
′1′2′3′

=

3∑

µ,ν,ρ,σ=0

L0′

µL1′

νL2′

ρL
3′

σǫµνρσ .

The right hand side of this equation is nothing other than the definition of the determinant
of the 4× 4 matrix L, which evaluates to one

ǫ0
′1′2′3′

= det L = 1,

hence
ǫ0

′1′2′3 = ǫ0123

and all the other components of ǫµ′ν′ρ′σ′

follow from the usual properties of determinant
(interchange two rows or two columns changes a sign, the determinant vanishes if any two
rows or columns are identical). We conclude that

ǫµ′ν′ρ′σ′

=
3∑

τ,λ,η,ζ=0

Lµ′

τLν′

λLρ′

ηLσ′

ζǫ
τληζ

has exactly the same components in every inertial reference frame, ±1 or 0. Note that
lowering the indices introduces minus sign, since one if them is necessarily the index 0,
and ǫ0123 = −ǫ0123 = −1.

Now the combination
∑3

µ,ν,ρ,σ=0 FµνFρσǫµνρσ has no free indices and is a Lorentz

invariant, again because the four factors of L−1 cancel against the four factors of L in∑3
µ′,ν′,ρ′,σ′=0 Fµ′ν′Fρ′σ′ǫµ′ν′ρ′σ′

. Expanding this in terms of E and B

3∑

µ,ν,ρ,σ=0

FµνFρσǫµνρσ = 4

3∑

i,j,k=1

F0iFjkǫijk = −4

c

3∑

i,j,k=1

Ei
( 3∑

l=1

ǫjklB
l
)
ǫijk

= −4

c

3∑

i,l=1

EiBl
(
2δi

l

)
= −8

c

3∑

i=1

EiBi = −8

c
E.B.

So

−1

8

3∑

µ,ν,ρ,σ=0

FµνFρσǫµνρσ =
E.B

c

has the same value in all inertial reference frames.
It is convenient to define

F̃µν :=
1

2

3∑

ρ,σ=0

ǫµνρσFρσ,
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called the dual of Fµν , which has components

F̃µν =




0 B1 B2 B3

−B1 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0


 ,

so Ei/c → Bi and Bi → −Ei/c, the operation of taking the dual essentially interchanges
E and B. In terms of the dual

−1

4

3∑

µν=0

Fµν F̃µν =
E.B

c

and
3∑

ν=0

∂µF̃µν =
1

2

3∑

µ,ρ,σ=0

ǫµνρσ∂µFρσ =
1

2

3∑

µ,ρ,σ=0

ǫµνρσ∂[µFρσ] = 0.

Maxwell’s equations are now succinctly written as

3∑

ν=0

∂µFµν = −µ0Jν ,
3∑

ν=0

∂µF̃µν = 0.

When Jµ = 0 Maxwell’s equations are symmetric under the interchange

F̃µν ↔ Fµν ,

and in modern attempts to unify the fundamental forces of nature, such as string theory,
this kind of duality symmetry plays a very important rôle. The symmetry is not there
when Jµ 6= 0 but it can be re-instated by postulating a dual current J̃µ such that

3∑

ν=0

∂µFµν = −µ0J
ν ,

3∑

ν=0

∂µF̃µν = −µ0J̃
ν .

Since the duality operation interchanges electric and magnetic fields and Jµ is a current
arising from electric charges J̃µ is a current arising from magnetic charges — re-instating
full duality symmetry necessitates introducing magnetic monopoles. Such particles have
never been observed, if they exist they must be both very rare, because we do not see
any that may have been produced in high energy astrophysical processes, and very heavy,
because we have not been able to produce any in the laboratory. If magnetic monopoles
exist they may be as heavy as 1016 times the mass of a proton.
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