
MP464: Solid State Physics

Problem Sheet

(1) Write down primitive lattice vectors for the 2-dimensional rectangular lattice, with
sides a and b in the x and y-directions respectively, and a face-centred rectangular lattice,
with a conventional cell of the same dimensions. Determine what happens to the primitive
lattice vectors in each case under reflections in the x and y-axes. The results are different
because the space groups are different.

(2) A two dimensional lattice has primitive lattice vectors a1 and a2. A different
choice of primitive lattice vectors a′1 and a′2 can always be written as a linear combination
of the first choice,

a′1 = α11a1 + α12a2
a′2 = α21a1 + α22a2

⇒
(

a1
a2

)(

α11 α12

α21 α22

)

=

(

a′1
a′2

)

,

with integer co-efficients α11, α12, α21 and α22. Show that this requires that

α11α22 − α12α21 = ±1

(hint: all primitve cells have the same volume).
Which of the following are legitimate primitive lattice pairs

a′1 = a1 + 2a2, a′2 = a2;i)

a′1 = 2a1 − a2, a′2 = a1 + a2;ii)

a′1 = 2a1 + 5a2, a′2 = a1 + 3a2?iii)

A three dimensional lattice has primitive lattice vectors a1, a2 and a3. Is

a′1 = 3a1 + a2 + 2a3

a′2 = 3a1 + 2a2 + 5a3

a′3 = a1 + a2 + 3a3

a primitive set?

(3) A two-dimensional centred rectangular lattice has a conventional cell with sides a
and b. Show that the special case b = a corresponds to a square lattice.



(4) A two-dimensional centred rectangular lattice has a conventional cell with sides a
and b. Show that the special case b =

√
3a corresponds to a hexagonal lattice.

Identify the 2-d lattice type, all the point group symmetries of the lattice and and
all the point group symmetries of the tiling below, found in the Alhambara palace in
Andalusia, Spain.

Which symmetries of the lattice are absent in the tiling?

(5) Derive the ratio c
a
=

√

8
3 quoted in the lectures for the hexagonal close packed

(HCP) structure (hint: find the height of a tetrahedron with a base consisting of an
equilateral triangle of side a).

Why is the HCP structure not a Bravais lattice?

(6) Find primitive lattice vectors for the 3-dimensional hexagonal lattice and calculate
the volume of a primitive cell in terms of a and b.

(7) Calculate the angle between the primitive lattice vectors given in the lectures for
the BCC lattice.

(8) Show that a FCC lattice with an extra point in the centre of a conventional cell,
i.e. a chimera of a FCC and a BCC lattice, is not a Bravais lattice.

(9) Show that a BCC lattice with conventional cell spacing a is equivalent to a face-
centred orthorhombic lattice with b = c =

√
2a (hint: rotate the BCC lattice through 45◦

about a conventional cell edge).

(10) Why is there no face-centred tetragonal lattice in the Bravais list of 3-dimensional
lattices?

(11) Derive the following packing fractions:

i) 2-dimenional hexagonal lattice: π

2
√
3
;



ii) Diamond:
√
3π
16 .

(12) Calculate the packing fraction for a face centred cubic crystal with a monatomic
basis consisting of spherical atoms.

Given that lead crystallises in a face centred cubic structure with a monatomic basis,
calculate the density of lead.

Note: Lead has atomic mass 207.2 and spherical atoms with radius 1.75× 10−10 m.

(13) The lattice plane defined by any three Miller indices (h, k, l) is always a 2-
dimensional Bravais lattice. Identify which 2-dimensional Bravais lattice is associated
with the (111), (110) and (100) planes of a simple cubic lattice.

(14) Show that the reciprocal of the BCC lattice is a FCC lattice and calculate the
volume of a primitive cell of the reciprocal lattice in terms of the lattice constant a of a
conventional cell of the direct lattice.

Show that in general the reciprocal of a reciprocal lattice is the original direct lattice.

(15) Sketch the first three Brilouin zones for a 2-dimensional hexagonal lattice.

(16) A crystal with FCC lattice and a monatomic basis can viewed a simple cubic
lattice with a basis consisting of four identical atoms. Calculate the structure factor for a
FCC lattice in the latter picture.

(17) A crystal consisting of simple cubic lattice, with lattice spacing a and primitive
lattice vectors a1 = ax̂, a2 = aŷ and a3 = aẑ, has a diatomic basis of two identical atoms,
one at the origin and one at a

2 (x̂+ ŷ+ ẑ). In the lectures it was shown that the structure
factor eliminates all Bragg reflections associated with reciprocal lattice vectors Ghkl with
h+ k + l an odd integer.

The same crystal can be viewed as a body centred cubic lattice with a monatomic
basis. All reciprocal lattice vectors then give Bragg peaks. How are these two pictures
reconciled?

(18) A two-dimensional square lattice has lattice spacing a. How many Bragg peaks
will be present for incoming X-rays with wavelength

√
2a ≤ λ ≤ 2a?

(19) The Lennard-Jones potential for Neon is

U(r) = 4ǫ

{

(σ

r

)12

−
(σ

r

)6
}

with ǫ = 5.0×10−22 J and σ = 2.74×10−10 m. Calculate the ratio of the cohesive energies
for Neon in BCC and FCC structures.

Note: in the notation used in the lectures the lattice sums for a BCC lattice are
A12 = 9.11418 and A6 = 12.2533.



(20) For any physical system exhibiting oscillatory behaviour of the form ei(Kx−ωt),
the phase of the oscillation is the same for points satisfying x

t
= ω

K
. The velocity vP = ω

K

is called the phase velocity. The phase velocity is only physically relevant if the dispersion
relation is such that ω(K) is a linear function of K, more generally it is the group velocity,

vg = dω(K)
dK

, which is physically relevant. Calculate the group and phase velocities for
the dispersion relation derived in the lectures for a one-dimensional crystal with a basis
consisting of two ions with masses M1 and M2 and identical spring constants.

Show that the group velocity is zero for K at a Brillouin zone boundary.

(21) In the lectures the dispersion relation for a one-dimensional crystal, with a
monatomic basis of atoms with mass M and lattice spacing a, was derived using a simple
model using Hooke’s law with spring constants C ,

ω(K) = ω0 sin

( |K|a
2

)

,

where ω0 = 2
√

C/M .
Show that this dispersion relation gives a density of states

D(ω) =
2N
π

1
√

ω2
0 − ω2

,

where N is the number of lattice points in the crystal.
This diverges at the zone boundary as K → π

a
and ω − ω0. A divergence like this in

the dispersion relation is not uncommon and is called a van Hove singularity.

(22) A one-dimensional lattice with lattice spacing a has a diatomic basis consisting of
two ions with identical massesm and equilibrium positions na and na+d, with 0 < d < a/2.
Assume that each ion only interacts with its nearest neighbours on either side and model
the force using Hooke’s law with spring constant D on the left and C on the right of the ions
at equilibrium positions na. Derive the dynamical equations that govern the displacement
un(t) away from equilibrium of ions at equilibrium positions na and the displacement vn(t)
away from equilibrium of ions at equilibrium positions na+ d. Using plane-wave solutions
of the form

un = ǫ1e
i(Kna−ωt), vn = ǫ2e

i(Kna−ωt)

derive the coupled equations

(

mω2 − (C +D)
)

ǫ1 +
(

C +De−iKa
)

ǫ2+ = 0
(

C +DeiKa
)

ǫ1 +
(

mω2 − (C +D)
)

ǫ2 = 0

for ǫ1 and ǫ2. Derive the dispersion relation

ω2 =
C +D

m
± 1

m

√

C2 +D2 + 2CD cos(Ka)



and show that the eigenvectors are given by

ǫ2 = ∓ C +DeiKa

|C +DeiKa| ǫ1.

Show that the group velocity of the two branches is

vg = ∓ CDa sin(Ka)

ω
√

C2 +D2 + 2CD cos(Ka)
.

Calculate the group velocity near a Brillouin zone boundary.

(23) Consider a monatomic one-dimensional crystal of unit cell dimension a in which
atoms separated by pa interact with a force constant Cp. Show that the dispersion relation
is

ω2(K) =
4

M

∑

p

Cp sin
2

(

p|K|a
2

)

.

Show that, in the long-wavelength (small |K|) limit,

ω(|K|) = a√
M

(

∑

p

p2 Cp

)
1

2 |K|,

provided the sum is finite.

(24) Show that the heat capacity for a gas of phonons in the Debye approximation,
without assuming low temperature, is

CV = 9NkB

(

T

ΘD

)3 ∫ xD

0

x4dx

(ex − 1)2
.

(25) The thermal energy of a collection of harmonic oscillators with frequency ω(|K|)
is

U(T, V ) = h̄

∫ ωMax

0

ω

(

< n > +
1

2

)

D(ω)dω.

In the lectures the zero point energy of the oscillators h̄ω
2

was ignored in the calculation of
the specific heat, as it is independent of temperature, but does it depend on the volume?
Including this term in the Debye approximation show that the thermal energy at low
temperature, assuming 3 acoustic modes, is

U(V, T ) =
π2V (kBT )

4

10v3h̄3 + 3h̄v

(

3N
4

)
4

3

(

π2

V

)

1

3

,

were v is the speed of sound.
For a monatomic one-dimensional crystal, with atoms of mass M and spring constant

C, we saw that v =
√

C
M

a. Express v in terms of V to find the how U above depends on

V .


