
MP464: Solid Sate Physics

Brian Dolan

1. Introduction

Broadly speaking there are three common states of matter: solid, liquid and gas,
though plasmas and other more exotic states can also be legitimately called different states
of matter. Thermodynamics studies all states of matter in general terms while fluid dy-
namics deals with properties specific to liquids and gases. Solid State physics describes
the properties of solids.

Examples of solids at room temperature are: rocks, metals (except mercury), ice, glass
and wood. This course will deal exclusively with one type of solid — crystals (rocks and
metals are made up of crystals, glass and wood are not crystals). The regular structure
of crystals makes it easier to construct realistic mathematical models of them, the cellular
structure of wood is much more complicated at a microscopic level than a crystal. While
this restriction to crystals may seem rather narrow it is in fact more general than one
might think: metals and rocks are in fact made up of an agglomeration of large numbers
of small crystals. While the crystal structure is obvious in some rocks, such as the sample
of Iron Pyrites shown below, it is not obvious in metals where the crystals are usually too
small to see without a microscope.

Some crystals can be very large, metres across like the ones shown here from a mine in
Mexico1

1 It has even been suggested by some geologists, based on analysis of seismic data and computer modelling of the

quantum mechanical properties of iron at high pressure, that the inner core of the Earth might be a single crystal of

iron more than 2400 km in size — but this is speculative.
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2. Lattices and crystals

A crystal is a periodic array of atoms or molecules in a regular lattice structure.
Mathematically a lattice is a rigid, periodic array of points that looks exactly the same
from every point and is infinite in extent. Putting an atom, a group of atoms or a molecule
(a basis) at every point of a lattice gives a crystal structure.

Crystal structure = Lattice + Basis.

Below is a two dimensional representation of this concept. The blue and green dots
represent atoms, e.g. Zn and S for a crystal of Zinc Sulphide. A lattice is an abstract
mathematical structure that is completely determined by a set of basis vectors, a1 and a2

below, which, when combined with the basis, gives a representation of a crystal,2

a 1

2a

a 1

2a

Lattice               +        Basis        =             Crystal Structure

A lattice is defined by a set of primitive lattice vectors, such as a1 and a2 in
the two dimensional example. The definition of a set of primitive lattice vectors is that
any lattice vector L can be expressed as a linear combination of primitive lattice vectors,
L = n1a1+n2a2, with integer co-efficients. Primitive lattice vectors describe a primitive
cell of the lattice, a parallelogram in this case,

2 Real crystals do not have infinite extent, of course, but even small crystals of a milligramme can have 1020 atoms

in them so it not unreasonable to model them with a lattice of infinite extent.
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a 1

2a

It may be useful to think of a two-dimensional lattice as a tiling of the two-dimensional
plane by primitive cells. A primitive cell need not be a parallelogram. By definition a
primitive cell contains one complete lattice point and only one complete lattice point.

A general point in a two dimensional lattice is described by a lattice vector

L = n1a1 + n2a2

defined by two integers n1 and n2.
Primitive lattice vectors and primitive cells are not unique, the pairs (a1,a2), (a

′
1,a

′
2)

and (a′′
1 ,a

′′
2) in the figure below are all primitive lattice vectors and the green shapes are

all possible primitive cells,

2a

a1 a’’1

2a’’a’1

2a’

The three green shapes in the figure above all have the same area,

|a1 × a2| = |a′
1 × a

′
2| = |a′′

1 × a
′′
2 |.

A three-dimensional lattice is described by three primitive lattice vectors (a1,a2,a3),
lattice vectors are defined by three integers, n1, n2 and n3,

L = n1a1 + n2a2 + n3a3,

and all primitive three dimensional cells have the same volume

Vc = |a1.(a2 × a3)|.

Symmetries

The set of all possible lattices can be classified by their symmetries:
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• All lattices are symmetric under translations by any lattice vector (all lattice points
move under such a translation);

• Symmetries leaving at least one lattice point fixed are called point symmetries— the
set of all point symmetries is called the point group of the lattice. Point symmetries
are: rotations about a lattice point; reflections in lines or planes containing a lattice
point and inversion about a lattice point (any given lattice might not have all of these
symmetries).

• The combination of all lattice translations and the point group of the lattice is called
the space group of the lattice.

As an example in 2-dimensions, consider the pattern below and imagine it to be
infinitely extended in both directions:

When extended this rectangular pattern is symmetric under rotations through π about
any point and, of course, rotations though 2π which just brings the pattern back to its
original orientation. The pattern is also symmetric under reflections about any of the
marked horizontal lines, we shall represent such reflections by the symbol M1 (M for
mirror), and reflections about any of the vertical lines, which we shall represent by M2.
The rotations leave precisely one point fixed while the reflections leave an entire line of
points fixed, these operations are part of the point group. Combining any two symmetry
operations that leave the same point fixed should also be a symmetry of the point group:
for example we could perform M1 followed by a rotation through π, this does not give a
new symmetry operation because it is completely equivalent to M2 (convince yourself of
this).

To understand the point group in more detail it is useful to draw up a table that shows
the result of combining any two symmetry operations, this is called a group multiplication

table. Denote a clockwise rotation though an angle θ by θ itself and the result of doing
nothing at all (or rotating through 2π) by 1 then the table below shows the result obtained
by first applying the operation in the top row and then applying the operation in the first
column. We get a 4× 4 table because we must include 1 in order to complete the table.

4



1 π M1 M2

1 1 π M1 M2

π π 1 M2 M1

M1 M1 M2 1 π

M2 M2 M1 π 1

Note that any symmetry multiplied by 1 just reproduces the symmetry itself, so 1
is called the identity operation. Also each row and each column contains a 1, any two
operations that combine to produce a 1 are called inverses of each other and every entry
has an inverse. The requirement that applying any two symmetry operation must produce
another symmetry and that every operation has an inverse in the multiplication table
puts very strong restrictions on the number of consistent multiplication tables that can
be constructed. All possible point groups have a finite number of elements and have been
classified and listed by mathematicians.

Space groups have a (countably) infinite number of elements, because there are an
infinite number of lattice vectors available for translations, but nevertheless all possible
space groups can also be classified and listed. This means that all possible lattice structures
can be classified and in three dimensions this was first achieved by the French physicist
Bravais in 1850. For this reason these lattices are called Bravais lattices. Sometimes there
is more than one space group with the same point group as we shall see below.

Two dimensional lattices

For simplicity we start with two dimensional lattices. In two dimensions there are
4 possible point groups (giving rise to 4 lattice systems) and 5 possible space groups
(giving rise to 5 inequivalent lattices). The possibilities are shown below (lattice points
are indicated by blue dots for clarity):
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α = π/2,π/3;

a = b

α
a

a2a

a1

a1

2a

2a

a 1

2a

a1

2a

a=b

α = π/2;
a = b

α=π/3

a

a

Hexagonal

π/3

<=>

Rhombic      =      Centred RectangularRectangular

a
b

α
a

b

Oblique
a = bα = π/2,π/3;

Square

a

a a 1

2d BRAVAIS LATTICES

4 Lattice Systems; 5 Bravais Lattices

In two dimensions the only possible point symmetries are:
i) Rotations by π

3 ,
π
2 and multiples of these, namely 2π

3 , π, 4π
3 , 3π

2 and 5π
3 .

ii) Reflection in a line.
All two-dimensional lattices have rotations by π as part of their space group, the

complete set of possibilities is:

4 lattice systems
(point groups)





π only Oblique

π + reflections

{
Rectangular
Centred Rectangular

multiples of π
2 + reflections Square

multiples of π
3 + reflections Hexagonal





5 Bravais lattices.

Although the rectangular and centred rectangular lattices share the same point group
they are different because they have different space groups, as can be seen by combining
reflections with translations. If M1 represents reflection in the x-axis and M2 reflection in
the y-axis then, for the rectangular lattice

M1 :
{
a1 → a1

a2 → −a2
M2 :

{
a1 → −a1

a2 → a2,

while, for the centred rectangular lattice

M1 :
{
a1 → a2

a2 → a1
M2 :

{
a1 → −a2

a2 → −a1.
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x

y

a

a
a

a

2

1

2

1

Rectangular Centred Rectangular

Thus M1 interchanges a1 and a2 for the centred rectangular lattice, and this is a
symmetry. There is no such symmetry for a general rectangular lattice, unless a1 and a2

have the same length in which case the a lattice is square and has a different space group
with more rotational symmetries.

Note that rotations by 2π
5 is not a possibility — it is not possible to tile a two dimen-

sional plane with a single shape with 5-fold symmetry, the figure below shows the kind of
thing that goes wrong if we try to do so,

π/5

Curiously it is possible to tile the two dimensional plane with a 5-fold symmetric pat-
tern (point group consisting of rotations by 2π

5
) but which has no translational symmetries

at all: the pattern never repeats, and so does not fall into the category of crystals by
our definition. This pattern requires two different rhombic tiles for its construction and is
called a Penrose tiling,
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Structures similar to this have been seen in Nature, they are called quasi-crystals, but we
shall not be describing these any further in this course.

Before going on to describe the classification of three-dimensional lattices we first
describe the construction of a special primitive cell, called a Wigner-Seitz cell. To
construct a Wigner-Seitz cell first pick any lattice point and draw lines connecting it to all
its neighbours. Bisect these lines at right-angles and the bisectors enclose a Wigner-Seitz
cell.

In the figure above solid black lines enclose primitive cells, the parallelograms described
earlier, and dotted black lines link other neighbours to the chosen lattice point, at the centre
of the green shape. Red lines represent perpendicular bisectors of all the black lines, both
solid and dashed. The red lines enclose the six-sided green shape, which is a Wigner-Seitz
cell for this lattice — it has the same area as one of the parallelograms.
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Three dimensional lattices

In three dimensions the only possible allowed rotations of a crystal are the same set
as in 2-dimensions, but around any one of three axes. There can be up to three reflection
planes and inversion in an origin corresponds to a reflection plus a rotation of π radians
(in 2-dimensions reflection in the origin is completely equivalent to a rotation through π).

There are 7 possible point groups in 3-dimensions, giving different 7 lattice systems,
with 14 different space groups and hence 14 inequivalent Bravais lattices:

;

Hexagonal
b

a

a

α = π/3; β = γ = π/2

α,β,γ = π/2 ; a = b = c

aγ

c

b

β
α

Triclinic

α

a
a

a

α

α

Rhombohedral

a = b = c

α = β = γ = π/2

a = c = b

β = γ = π/2

α = π/3

β = γ = π/2; α = π/2

a = b = c

a

b

c

Orthorhombic
α = β = γ = π/2;

a = b = c

c = a

a = b = c

α = β = π/2

3d BRAVAIS LATTICES

7 Lattice Systems; 14 Bravais Lattices

a
b

c

α α

α

Monoclinic

a = b = c

a

a

a

Cubic α = β = γ = π/2; a = b = c

a

a

c

Tetragonal α = β = γ = π/2;

c = a; c = a/  2

α = β = γ = π/2
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We shall consider four of the simpler cases in more detail. Firstly the three cubic
lattices all have space groups which are the symmetries of a cube, which include rotations,

Including the identity gives 24 proper (chiral) operations; 

Including inversion gives 24 achiral operations = 48 in total.

6x1=6

π

Inversion

π/2, π,      3π/2 2π/3, 4π/3

Symmetries of a cube (Octahedral group)

3x3=9 4x2=8

and reflections in various planes,
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Examples of mirror (achiral) symmetries of a cube, reflection in a plane

1. Simple cubic lattice

For the simple cubic lattice we can choose primitive lattice vectors to be

a1 = ax̂, a2 = aŷ, a3 = aẑ.
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The volume of a primitive cell is

Vc = |a1.(a2 × a3)| = a3.

x

z y

a
1

a 2

a
3 a

a

Examples of materials that crystallise in simple cubic form are Nitrogen (at 20◦ K),
Caesium Chloride (CsCl with a = 0.411Å) and the mineral Perovskite (CaTiO3 with
a = 2.94Å). *

Cl

Cs

Ceasium Chloride

Ca

Ti

O

Perovskite

There is one full Caesium atom in each primitive cell of a CsCl crystal, there are eight blue
dots at the vertices of the cube, but only one-eighth of each dot is inside the primitive cell.
Similarly there are six red dots on the faces of the cube for CaTiO3 but only half of each
dot is inside the cube, so there are three Oxygen atoms in each primitive cell.

Note that CsCl and CaTiO3 have different crystal structures, but the same lattice
structures — their bases are different.

* Perovskite is an important ingredient in geology: it is believed that the lower part of
the Earth’s mantle, between 700 and 2,500 km down, could be more than 90% Perovskite.
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2. Body centred cubic

Putting an extra lattice point at the centre of every primitive cell of a simple cubic
lattice gives a distinct lattice structure called body centred cubic. A body centred cubic
lattice can be viewed as two interwoven simple cubic lattices, as shown on the right below.

a

a

1

3a

2

a

a

The picture on the left above is not a primitive cell, it contains two lattice points, but
is still a useful way of visualising a body centred cubic lattice — it is called a conventional
cell. A set of primitive lattice vectors is shown above,

a1 = ax̂, a2 = aŷ, a3 =
a

2
(x̂+ ŷ + ẑ).

The volume of a primitive cell is

Vc = |a1.(a2 × a3)| =
a3

2
.

An alternative set, which is more symmetric, is

a
′
1 =

a

2
(−x̂+ ŷ + ẑ) a

′
2 =

a

2
(x̂− ŷ + ẑ) a

′
3 =

a

2
(x̂+ ŷ − ẑ),

with has the same volume,

Vc = |a′
1.(a

′
2 × a

′
3)| =

a3

2
,

as it must do if it is to be a primitive cell.
Examples of materials that crystallise in body centred form are iron, Fe, potassium,

K, and Sodium, Na.

Fe

Iron

Note that CsCl is not a body centred lattice: the Cl atom at the centre of the cell
is different to the Ce atoms at the vertices, so the central point is not equivalent to the
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vertices — it is not a lattice point. Do not confuse the lattice structure of CsCl with that
of Iron — they are different.

The Wigner-Seitz cell for a body centred cubic lattice is a truncated octahedron:

Primitive Cell

Wigner−Seitz Cell

Conventional Cell

BCC Lattice Cell

���
���
���
���

���
���
���
���

3. Face centred cubic

Putting an extra lattice point at the centre of the faces of a primitive cell of a simple
cubic lattice gives another distinct lattice structure called face centred cubic. A face
centred cubic lattice can be viewed as four interwoven simple cubic lattices.

a’
2

a’
1

3a’

a

a

The picture above is not a primitive cell because it contains four lattice points, it is a
conventional cell of the face centred lattice. A set of primitive lattice vectors, as shown
above, is

a
′
1 =

a

2
(ŷ + ẑ) a

′
2 =

a

2
(x̂+ ẑ) a

′
3 =

a

2
(x̂+ ŷ),
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The volume of a primitive cell is

Vc = |a1.(a2 × a3)| =
a3

4
,

where a is the size of a conventional cell.
Examples of metals that crystallise in face centred form are aluminium, gold and lead,

with bases consisting of a single atom at every lattice site.

Au

Salt, NaCl, is face centred, with a = 3.56Å, it is not simple cubic!

Cl

Na

Diamond has a face centred structure with a basis consisting of two carbon atoms,
one at the origin (front-bottom-left corner) and one at a

4 (x̂+ ŷ+ ẑ), and a identical pair at
all lattice sites of course. This structure allows each carbon to be linked to its four nearest
neighbours, each a distance

√
3a
4

away, by covalent bonds. Si, Ge and Sn have the same
structure as diamond.

C

Zinc sulphide, ZnS, has a similar structure, except the base pair is ZnS rather than
two identical carbon atoms,

Zn

S
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Carbon 60 (buckyballs) has also been found to crystallise in face centred cubic form
— in this case the basis consists of sixty carbon atoms!

The Wigner-Seitz cell for a face centred cubic lattice is a truncated rhombic dodeca-
hedron:
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FCC Lattice Cell

Conventional Cell

Primitive CellWigner−Seitz Cell

���
���
���

���
���
���
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4. Hexagonal close packed structure

Strictly speaking this is not a Bravais lattice, but it is nevertheless a useful structure
to consider as it not infrequently occurs in Nature, eg. Mg, Ti, Zn. The hexagonal
close packed structure consists of two interwoven 3-dimensional hexagonal lattices and,
like diamond, it is really a Bravais lattice (3-d hexagonal) with a basis consisting of two
identical atoms. It is constructed by stacking 2-dimesnional hexagonal lattices on top of
each other in the sequence ABAB... as shown in the upper figure below:

2 a

C

C

C

C

C

C

ABCABC...

ABABA....

a

array of spheres, radii a/2

C C CC

C C C

B
A

BB

B B

AAA

A A A

AAAA

A

A

A

B

B
2nd layer at B

3rd layer at A

a

a2

1 a

2−d hexagonal lattice

AA

A A

AA

A

A

A

A

A

A

AA

B

B

B

B

B

B

A

B

B

B

B

B

BA

c

A

AA

Hexagonal Close Packed Structure

For optimal close packing with identical spheres c =
√

8
3a. Magnesium for example

crystallises in a hexagonal close packed structure with a = 3.21Å and c = 5.21Å, giving
c
a
= 1.62.

Different sequences of stacking hexagonal lattices give different structures. For exam-
ple, as shown in the lower picture above, ABCABC... is equivalent to face centred cubic.
Other sequences are possible, e.g ABACABAC... for some rare earth metals.
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Filling fractions

Solids have higher densities than liquids or gases, because their atoms are closely
packed. For example we can calculate the fraction of space filled by a spherical monatomic
basis in a simple cubic crystal. For a cell size a the basis atoms just touch if their radius
is a

2
.

}a
a/2

Each primitive cell has a volume Vc = a3 and contains one complete sphere with

volume 4π
3

(
a
2

)3
= π

6
a3, so the fraction of space that is filled by solid spheres of radius a

2
,

the packing fraction is
VSphere

Vc

=
π

6
= 0.524...

For some other structures the packing fractions are:

FCC :

√
2π

6
= 0.740...

BCC :

√
3π

8
= 0.68...

Diamond :

√
3π

16
= 0.34...

(the first two are for a monatomic spherical basis).
We finish this section with a couple of observations. First, note that the decomposition

Crystal = Lattice + Basis is not necessarily unique. For example a body centred cubic
lattice with a single monatomic basis (e.g. iron) is identical to a simple cubic lattice with a
basis consisting of two identical atoms, one at the origin and one at the centre, a

2 (x̂+ŷ+ẑ),
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Secondly we observe that, once the basis is included, the symmetry of the crystal
might be smaller than that of the lattice. The list of possible crystal point groups and
space groups is larger than those of lattices:

Lattices: 7 point groups; 14 space groups
Crystals: 32 point groups; 230 space groups

We shall not list all possible crystal space groups here. In four dimensions there are
52 Bravais lattices (different lattice space groups).

3. Reciprocal Lattices

Bragg Law

Experimentally crystal structure can be determined by diffraction experiments. Typ-
ical atomic separations in a crystal are of the order of 1Å = 10−10 m so we need wavelengths
of this order to resolve the structure. For electromagnetic radiation this corresponds to X-
rays, though we can also use electrons or neutrons whose de Broglie wavelength is λ ≈ 1Å.

For concreteness let’s consider X-rays reflecting off 2-dimensional planes in a crystal.
Generically the X-rays experience partial reflection — part of the wave is transmitted and
the remainder reflected. The reflected wave can experience interference between lattice
planes, either constructive or destructive depending on the angle of incidence. In the
figure below there is constructive interference when the path difference between the two
waves shown is an integral multiple N of the wavelength,

d sin θ
d

θ

θθ

There is constructive interference when

2d sin θ = Nλ. (1)
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This is known as Bragg’s Law. Since N is an integer only some specific angles, given
by sin θ = Nλ

2d
, will give strong reflection — angles of incidence that do not satisfy this

criterion for any integer N will tend to be transmitted rather than reflected. There will
be peaks in intensity, Bragg peaks, for special directions such that angle θ satisfies (1)
— other directions will receive no scattered X-rays. Bragg peaks manifest themselves
as bright spots as seen in this X-ray diffraction pattern for a crystal of Alum (hydrated
potassium aluminium sulfate, KAl (SO4)2.12H2O).

This simple derivation of the Bragg law assumes that X-rays scatter off smooth 2-
dimensional planes, like partially transparent mirrors, but in reality they scatter off the
electrons in atoms which are localised near points in the plane. To make further progress
we need a more realistic mathematical model of the diffraction process. First we define a
lattice plane.

Lattice planes and Miller indices

A lattice plane is a two-dimensional plane passing through any three non-colinear
points of a three-dimensional lattice. Due to periodicity of the original lattice a lattice
plane always contains an infinite number of points. A lattice plane is in fact always one of
the five two-dimensional Bravais lattices.

For example consider an orthorhombic lattice with primitive lattice vectors a1 = a x̂,
a2 = b ŷ and a3 = c ẑ. A general lattice point can be represented by the lattice vector

L = n1a1 + n2a2 + n3a3 = n1a x̂+ n2b ŷ+ n3c ẑ,

with n1, n2 and n3 three integers. So L has Cartesian co-ordinates x = n1a, y = n2b and
z = n3c.
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A linear relation between x, y and z defines a plane, e.g.

h

a
x+

k

b
y +

l

c
z = p, (2)

with h, k, l and p fixed constants. If we allow p to vary, equation (2) defines a family of
parallel planes. So, if (x, y, z) is a lattice point, the constraint

hn1 + kn2 + ln3 = p (3)

defines a family of parallel planes, one for each value of p (the plane with p = 0 contains
the origin). To describe this family of parallel planes it is sufficient to consider p = 0, since
we can always choose the origin to lie in any given lattice plane. So we need only consider

hn1 + kn2 + ln3 = 0. (4)

For an infinite number of solutions to this equation, (n1, n2, n3), which are not co-linear,
h, k and l must be rational numbers, and we can always multiply (4) by the least common
multiple of their denominators to make them integers — so we can choose h, k and l to
be integers without any loss of generality. The smallest three integers (h, k, l) that define
a family of parallel lattice planes are called Miller indices.

Note:
i) If a lattice plane is parallel to one of the primitive lattice vectors then the correspond-

ing co-efficient in (3) is infinity and the Miller index is 0.
ii) When there is no possibility of confusion, commas are omitted from the triple (h, k, l)

and (hkl) denotes either a single lattice plane or the set of equally spaced parallel
planes, one for each value of p.

iii) By convention the Miller indices associated with a negative co-efficient in (3) is indi-
cated with a bar above it, e.g. (hkl̄).

iv) Another convention is that square brackets, [hkl], denotes the direction normal to the
plane (hkl). For simple cubic lattices [hkl] is in the same direction as some lattice
vector L, but this is not the case for all of the Bravais lattices.

a
2

a
1

a
3

a
3

a
1

a
2

a
1

a
3

a
2

(100) (110)

(100)
_

Examples of Miller indices for lattice planes in a simple cubic lattice
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Reciprocal Lattice

The above simple derivation of Bragg’s law ignores the periodic structure of the lattice
planes and we have to be more sophisticated in order to understand fully the kind of X-
ray diffraction pattern shown above. X-rays scatter elastically off electrons in the atoms
that make up the crystal. Denote the density of electrons at a point r by ρ(r) (with
dimensions of 1/length3). Since the crystal is periodic ρ(r) should be a periodic function,
ρ(r + L) = ρ(r) for any lattice vector L. Since ρ(r) is periodic we can write it as a
three-dimensional Fourier series.

As a warm-up exercise, first consider the simple case of a one dimensional monatomic
lattice, i.e. a line of periodically spaced atoms, each a distance a from its nearest neighbours
on either side, so the one dimensional electron density is a periodic function of its argument
x,

ρ(x) = ρ(x+ a).

Periodic functions can be expanded as a Fourier series

ρ(x) = ρ0 +

∞∑

m=1

Am cos

(
2πmx

a

)
+

∞∑

m=1

Bm sin

(
2πmx

a

)
.

ρ0 =
1

a

∫ a

0

ρ(x)dx

is just the average density over a single period and the co-efficients Am and Bm can be
calculated from ρ(x) in the standard way

Am =
2

a

∫ a

0

cos

(
2πmx

a

)
ρ(x)dx

Bm =
2

a

∫ a

0

sin

(
2πmx

a

)
ρ(x)dx.

It will be convenient to re-express the Fourier series as a sum of complex exponentials,

ρ(x) =
∞∑

m=−∞
ρme

2πimx
a ,

where the Fourier co-efficients Am = ρm + ρ−m and Bm = i(ρm − ρ−m) for m ≥ 1 are
real numbers. The Fourier co-efficients in exponential form, ρm and ρ−m, are complex in
general but must satisfy ρ∗m = ρ−m since ρ(x) is real. In fact ρm = 1

2Am + 1
2iBm and

ρ−m = 1
2
Am − 1

2i
Bm for m ≥ 1. The co-efficients ρm are obtained from

ρm =
1

a

∫ a

0

ρ(x)e−
2πimx

a dx

for all integral m.
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We seek a similar decomposition for all of the three dimensional Bravais lattices.
Consider first a simple cubic lattice, with lattice spacing a. This is very like three copies
of the one dimensional lattice and we can write

ρ(r) =

∞∑

m1=−∞

∞∑

m2=−∞

∞∑

m3=−∞
ρm1,m2,m3

e
2πim1x

a e
2πim2y

a e
2πim3z

a (5)

The only subtlety is that this cannot be written as

( ∞∑

m1=−∞
ρm1

e
2πim1x

a

)( ∞∑

m2=−∞
ρm2

e
2πim2y

a

)( ∞∑

m3=−∞
ρm3

e
2πim3z

a

)

because there is no reason to assume that ρm1,m2,m3
can be factorised into ρm1

ρm2
ρm3

,
and in general it cannot. Equation (5) can be written more compactly as

ρ(r) =
∑

{m1,m2,m3}
ρm1,m2,m3

e
2πim.r

a =
∑

G

ρGeiG.r

where r = xx̂+ yŷ + zẑ,

G =
2π

a

(
m1x̂+m2ŷ +m3ẑ

)
,

and the sum means the sum over all integer triples (m1, m2, m3).
We can write a similar decomposition for ρ(r) for any three dimensional Bravais lattice

ρ(r) =
∑

G

ρGeiG.r, (6)

where ρG are independent of r and the sum is over all vectors G for which

ρ(r) = ρ(r+ L) ⇒
∑

G

ρGeiG.r =
∑

G

ρGeiG.(r+L) (7)

for any lattice vector L.
As for one-dimensional Fourier transforms the Fourier co-efficients ρG are derivable

from the original electron density function ρ(r)

ρG =
1

Vc

∫

Primitive
Cell

ρ(r)e−iG.rdV.

The set of all allowed G’s satisfying (7) can be found as follows: define three vectors
b1, b2 and b3 in terms of primitive lattice vectors a1, a2 and a3

b1 = 2π
a2 × a3

a1.(a2 × a3)
, b2 = 2π

a3 × a1

a1.(a2 × a3)
, and b3 = 2π

a1 × a2

a1.(a2 × a3)
. (8)
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With this definition it is automatic that

bi.aj = 2πδij

where δij is the Kronecker δ, equal to 1 if i = j and zero otherwise. Then, for any three
integers m1, m2 and m3,

G = m1b1 +m2b2 +m3b3 (9)

satisfies
eiG.L = e2πi(n1m1+n2m2+n3m3) = 1 (10)

for any lattice vector L = n1a1 + n2a2 + n3a3, so (7) is automatic.
The set of all vectors G satisfying (9) itself constitutes a lattice, called the reciprocal

lattice, with primitive lattice vectors b1, b2, b3.
For a 2-dimensional lattice, just set a3 = ẑ and use

b1 =
2π(a2 × ẑ)

|a1 × a2|
, b2 = −2π(a1 × ẑ)

|a1 × a2|
.

Examples:
i) Simple Cubic: primitive lattice vectors,

a1 = ax̂, a2 = aŷ, a3 = aẑ;

the reciprocal lattice has primitive lattice vectors

b1 =
2π

a
x̂, b2 =

2π

a
ŷ, b3 =

2π

a
ẑ.

It is a simple cubic lattice with lattice spacing 2π
a
.

ii) FCC: conventional cell size a, primitive cell volume Vc =
a3

4
,

a1 =
a

2
(ŷ + ẑ), b1 =

2π

(a3/4)

(a
2

)2 (
(x̂× ŷ) + (ẑ× x̂) + (ẑ× ŷ)

)
=

2π

a
(−x̂+ ŷ + ẑ);

a2 =
a

2
(ẑ+ x̂), b2 =

2π

a
(x̂− ŷ + ẑ);

a3 =
a

2
(x̂+ ŷ), b3 =

2π

a
(x̂+ ŷ − ẑ).

The reciprocal lattice is body centred cubic, with conventional cell lattice spacing 4π
a
.

iii) BCC: with conventional cell size a the reciprocal lattice is face centred cubic with
conventional cell size 4π

a
(the proof is left as an exercise).

When necessary the original lattice will be referred to as the direct lattice, to distinguish
it from the reciprocal lattice.
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Suppose we have a family of lattice planes, (hkl), with minimal separation dhkl. If L

is a lattice vector in one plane and L̃ a lattice vector in another plane, a distance s dkhl
away from the first (with s any positive integer), then

(L− L̃).n̂ = sdhkl

where n̂ is a unit normal to the planes.

n̂

L
~

L
~

L−

O

}sd
hkl

L

This implies that

e
2πi
dhkl

n̂.(L−L̃)
= e2πis = 1

for all L− L̃ (by varying s, L and L̃ this will include all direct lattice vectors). From the
definition (10) this in turn implies that G = 2π

dhkl
n̂ is a reciprocal lattice vector. It is in

fact the shortest reciprocal lattice vector that is normal to the (hkl) planes, hence

Ghkl =
2π

dhkl
n̂

has length 2π
dhkl

, where dhkl is the distance between neighboring planes among the (hkl)
set of planes.

Von Laue condition

We can now derive a more powerful version of the Bragg condition, called the Von Laue
condition, which takes into account the fact that lattice planes are collections of lattice
points. Consider a beam of X-rays scattering elastically off identical atoms sitting at two
lattice points separated by a lattice vector L. Elastic scattering means that the energy,
and hence wavelength λ, of the X-rays does not change, only their direction changes. If
the incoming beam has wavevector k = |k|k̂ in the k̂ direction and the outgoing beam

has k′ = |k|′k̂′ in the k̂′ direction then |k| = |k′| = 2π
λ

(k̂ and k̂′ are unit vectors in the
directions k and k′).
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φ’

k

k’

L
φ

φ

φ = ^

= − ^

L.k’

L.k

Lcos

Lcos   ’

From the diagram above the path difference between two X-rays scattering off the two
atoms is L.(k̂′ − k̂). Constructive interference requires

L.(k̂′ − k̂) = Nλ

where N is an integer. Hence
L.(k′ − k) = 2πN,

since k = k′ = 2π
λ
. There will be a huge enhancement in the intensity of the scattered

wave if this is true for all lattice vectors L, that is if

eiL.(k−k′) = 1 (11)

for all L, which is equivalent to the statement that

G = k− k′

is a reciprocal lattice vector, (10). From this follows

−k′ = G− k ⇒ |k′|2 = G2 − 2G.k+ |k|2,

giving

G2 = 2G.k (12)

since |k′|2 = |k|2. This is the von Laue condition, a scattered X-ray will show a peak
in intensity if the incoming wavevector k satisfies this condition for some reciprocal lattice
vector G.

This is related to the Bragg condition (1) as follows. Since G is a reciprocal lattice
vector and it is an integral multiple, G = NGhkl, of some shortest reciprocal lattice vector,
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Ghkl, for three integers h, k and l. If (hkl) have no common divisor3 then Ghkl =
2π
dhkl

n̂

has magnitude |Ghkl| = 2π
dhkl

where dhkl is the distance between neighbouring (hkl) lattice
planes. The von Laue condition is

|G|
2

= Ĝ.k = |k| sin θ
where the angle θ is defined in the figure below,

O
k’k

G

k

G/2

θ

G|   |/2

Hence

|G|
2

=
πN

dhkl
= |k| sin θ =

2π

λ
sin θ ⇒ 2dhkl sin θ = Nλ,

which is the Bragg condition (1) with d = dhkl.
From the figure above it can be seen that the maximum intensity in the scattered ray

is achieved when the tip of the wavevector k lies in a plane which is the perpendicular
bisector of a reciprocal lattice vector G = NGhkl for some (hkl) — this called the Bragg
plane for the incoming wave. Most k will not lie in a Bragg plane and so will not give
peak intensity for the scattered wave.

Ewald construction

A neat way of visualising the von Laue condition is the Ewald construction. Choose
an origin O at a point in the reciprocal lattice and place the tail of k at O. Draw a circle
of radius |k| centred on the tip of k, so it passes through the tail of k. k will generate
a Bragg peak if and only if another reciprocal lattice point G (other than O) lies on the
circle.

G

O

k

k’

3 The k in (hkl) here is an integer describing reciprocal lattice planes, not the wave number of the incoming X-ray!
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Three common methods of observing diffraction peaks are:

1) Laue method: fix the direction of k relative to the crystal and allow |k| to vary
(i.e. vary the wave-length), effectively thickening the circle in the Ewald construction
above so that it encompasses some G

2) rotating crystal method: fix k and rotate the crystal, equivalent to rotating the
lattice points in the Ewald construction about the origin.

3) powder method: use a powder consisting of many small crystals, in random orien-
tations, with k fixed. There will always be some small crystals with the lattice in the
correct orientation to give a peak.

The Ewald construction makes it clear that if |k| is less than the reciprocal lattice spacing
there will be no Bragg peaks, i.e. the wavelength is too long. If |k| is very large compared
to the reciprocal lattice spacing, i.e. very short wave-lengths, there will be very many
such G’s and very many allowed directions k′, when this happens the Bragg peaks wash
out and the pattern is lost. A clear pattern is only seen if |k| is larger than the reciprocal
lattice spacing, but not too large, corresponding to wavelengths of the order of the direct
lattice spacing which, for most crystals, is of the order of a few Å. For electromagnetic
radiation this corresponds to X-rays, but electrons or neutrons with velocities momenta
corresponding to de Broglie wavelengths of a few Å can also be used.

Below is the X-ray diffraction pattern for diamond, taken using the von Laue method.
Note the 4-fold symmetry which reflects the underlying cubic structure of diamond:

Brillouin zones

AWigner-Seitz cell of the reciprocal lattice is called aBrillouin zone. Brillouin zones
are another very useful way of understanding how X-ray diffraction patterns can arise —
they will also play a central rôle in understanding crystal vibrations and the movement of
electrons through crystals to be studied later. For a one-dimensional lattice for example,
with lattice spacing a, the reciprocal lattice has lattice spacing 2π

a
and the region between

−π
a
and π

a
is a Brillouin zone.
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2   /aπ

Brillouin
Zone

In two or three dimensions the von Laue condition requires that the tip of k, the
wavevector of the incoming X-ray, lie on a plane which is the perpendicular bisector of a
reciprocal lattice vector G. Consider first a 2-dimensional square lattice, with primitive
lattice vectors a1 = ax̂ and a2 = aŷ. The reciprocal lattice is also square, with primitive
lattice vectors b1 = 2π

a
x̂ and b2 = 2π

a
ŷ and reciprocal lattice vectors have the form

G = m1b1 + m2b2, with m1 and m2 integers. In the figure below the blue square is
bounded by four red lines, each is a perpendicular bisector of a reciprocal lattice vector.
The four lattice vectors that are used to construct the blue square are ±b1 and ±b2

(m1 = ±1, m2 = ±1). The blue square is a Wigner-Seitz cell for the reciprocal lattice and
is called the first Brillouin zone. An incoming X-ray whose wavevector k has its tail
on the central reciprocal lattice point and its head anywhere on the boundary of the blue
square will generate a Bragg peak.
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3 42 thrdndst1

Brillouin Zones

Brillouin Zones for Square Lattice

Reciprocal lattice vector

Bisector 

 

The yellow triangles are bounded on the outside by perpendicular bisectors of the four
reciprocal lattice vectors

G = b1 + b2, G = b1 − b2, G = −b1 + b2, G = −b1 − b2,

and on the inside by the first Brillouin zone, the blue square. They can be pieced together
to make a yellow square which is also a Wigner-Seitz cell of the reciprocal lattice, identical
in size and shape to the first Brillouin zone. This cell is called the second Brillouin
zone. An incoming X-ray whose wavevector k has its tail on the central reciprocal lattice
point and its head anywhere on the boundary of the yellow triangles will generate a Bragg
peak.

The green triangles can be pieced together to make a square identical to the blue
one — this is the third Brillouin zone (can you work out which reciprocal vectors are
bisected by the red boundaries?). The pink shapes constitute the fourth Brillouin zone,
and so on.

Blue arrows in the figure below give examples of k-directions that generate Bragg
peaks from the boundary of the first Brillouin zone. The tip if the wavevector is rotated to
give the blue circle, only the specific directions where this circle intersects the boundary of
a Brillouin zone (red lines) corresponds to an incident direction that gives a Bragg peak.
The reflected waves k′ are shown in a lighter blue and, for clarity, they have been extended
by dotted blue arrows and labelled by the Miller indices of the reciprocal vector that is
bisected by the relevant red line.
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Bragg peak directions for square lattice

k

 

for fixed |   | extending into 2nd Brillouin zone

 

 

(01)

(10)

(01)

(hk)

Miller indices of G

(10)

kk’

(hk)

(10)(10)

(10)

(01)

(10)

(01)

(01)

(01)

Shorter wavelengths (longer k) can scatter off more Brillouin zones: the following figure
shows incident directions that give Bragg peaks by scattering off second and even third
Brillouin zone boundaries. The second figure below shows the direction of the outgoing
(scattered) wave for the same length of k.
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Bragg peak k−directions for square lattice

 

 

(hk)

Miller indices of G

(extended

for clarity)

(01)

k

(10)
(11)(11)

(11)

(11) (11)

(11)(11) (10)

(01)

(10)

(10)

(11)

(01)(01)
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Bragg peak k’−directions for square lattice

 

 

(11)

(11)

(10)(11)

(10)

(11)

(01)

(11)

(11)

(01)

Miller indices of (hk) G

(11)

(11)

(10)

(10)

(01)(01)

k’

In summary, a Bragg peak is present if and only if the tip of k lies on the boundary
of a Brillouin zone in the above construction.
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Structure factors

So far we have assumed that lattice sites, and only lattice sites, act as point scatterers.
Representing the scattered wave by a complex number (the physical wave is the real part)
each lattice site L contributes ei(k−k′).L to the scattered wave, so the total scattered
amplitude is proportional to4

∑
L ei(k−k′).L. If k − k′ = G is a reciprocal lattice vector

then ei(k−k′).L = 1 for every lattice site and every term in the sum adds coherently. If
k − k′ is not a reciprocal lattice vector every term in the sum has a different phase and
they combine destructively to give a total of zero.

For a crystal with anything other that a monatomic basis the true story is a little more
complicated. Electromagnetic waves scatter predominantly off electrons (electrons react
to an incoming wave much more readily than positive ion cores, as they are much lighter
and more responsive). Denote the electron density ρ(r) then, in general, the scattered
amplitude is proportional to

F (k− k′) :=
∫

dV ρ(r)ei(k−k′).r,

where the integral is over the volume of the crystal.
For a monatomic crystal the electron density resides only at lattice sites and we can

write
ρ(r) = n0δ(r− L)

where n0 is the number of electrons in the atom free to respond to the incoming wave
and −e is the charge on an electron, but ρ will be more complicated than this for a more
general crystal type. With the von Laue condition, k− k′ = G, we have

F =

∫

Crystal

dV ρ(r)eiG.r = Nc

∫

Cell

dV ρ(r)eiG.r,

where Nc is the number of cells in the crystal. The integral over a single cell,

SG =

∫

Cell

dV ρ(r)eiG.r,

is called the structure factor — a dimensionless number, in general complex.
If the basis consists of s atoms at points rj in the unit cell, where j = 1, . . . , s, and

ρj(r) is the electron density of the j-th atom then

SG =
s∑

j=1

∫

Cell

dV ρj(r)e
iG.r =

s∑

j=1

eiG.rj

∫

Cell

dV ρj(r)e
iG.(r−rj) =

s∑

j=1

fje
iG.rj ,

where

fj :=

∫

Cell

dV ρj(r)e
iG.(r−rj)

4 Remember (11), ei(k−k
′).L=1 for constructive interference — if it is not unity for all L different lattice points

will give different complex phases and the sum will be zero.
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is called the atomic structure factor. To a good approximation fj is independent of rj
and G, since we expect ρj(r) to be strongly localised about r = rj , ρj(r) ≈ njδ(r− rj) ⇒
fj ≈ nj where nj is the number of electrons in atoms j that are free to respond to the
incoming X-ray.

Example 1: Caesium Chloride has a simple cubic structure with a basis consisting
of two atoms (s = 2), which we take to be a Caesium atom at r1 = 0 and a Chlorine atom
at r2 = a

2
(x̂+ ŷ + ẑ), using a conventional cell basis a1 = ax̂, a2 = aŷ, a3 = aẑ. Sodium

and Chlorine have different electronic structures and we expect them respond differently
to X-rays, so f1 6= f2. The reciprocal lattice is also cubic, with

G =
2π

a
(hx̂+ kŷ + lẑ).

This gives

Shkl = f1 + ei
a
2 (x̂+ŷ+ẑ).Gf2 = f1 + eiπ(h+k+l)f2 =

{
f1 − f2 for h+ k + l odd;
f1 + f2 for h+ k + l even.

Indeed experimentally reflections from (200) and (110) planes are stronger than from (100)
and (300) planes.

Example 2: Sodium has a BCC structure with a monatomic basis, but we can also
think of this a simple cubic structure with a diatomic basis, s = 2, consisting of identical
atoms of sodium at r1 = 0 and at r2 = a

2
(x̂ + ŷ + ẑ). This is similar to CsCl, but now

f1 = f2 and we expect all Bragg peaks corresponding to h + k + l odd to be completely
absent, and indeed this is the case.

The absence of h+ k+ l odd planes for BCC crystals can be understood intuitively in
a simple two-dimensional example with adjacent lines of atoms off-set from one another,

}
}

π}2π
π

When the phase of the wave reflected from adjacent layers differ by π they interfere
destructively, but then the next to adjacent layers must necessarily differ in phase by 2π
and interfere constructively.

Diffraction experiments on crystals require wavelengths of a few Å corresponding to
X-rays for electromagnetic radiation, but we can also use electrons or neutrons with de
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Broglie wavelength of similar size. For X-rays the scatters are electrons in the crystal,
but for neutrons it is the atomic nuclei that cause scattering while for electrons it is the
combined electrostatic potential of the crystal electrons plus the positively charged atomic
nuclei that cause scattering. We therefore get different information about the crystal from
X-rays, neutron and electron scattering.

4. Crystal Binding
The way in which atoms are bound together to form crystals depends in detail on

inter-atomic forces between the atoms making up the crystal. We shall discuss two cases
in some depth: inert elements and ionic crystals, but you should bear in mind that there
are other cases, such as covalent bonding, that will not be covered in this course.

Inert elements: (i.e. noble gases: Ne, Ar, Kr, Xe). These gases tend to form face centred
cubic crystals when they solidify, with a monatomic basis. (The physics of solid Helium is
very different and will not be covered here.)

To understand their structure we model the force between two atoms separated by r
using the Lennard-Jones potential,

U(r) =
B

r12
− A

r6
= 4ε

{(σ
r

)12
−
(σ
r

)6}
,

where A and B are two constants which can be traded for an energy ε and a length σ. The
second term above represents an attraction between atoms due to dipole-dipole interactions
while the first term is a repulsion due to quantum effects — when the atoms get so close
to one another that their outermost electronic orbitals start to overlap the Pauli exclusion
principle wants to prevent the electron wave-functions from overlapping too much.

The energy ε and the length σ are characteristics of each element and they can be
determined from experiments performed on the gaseous phase, determining the equation
of state by measuring virial co-efficients and viscosity,

Melting ε(10−23J) σ(Å)
Point (◦K)

Ne 24 50 2.74
Ar 84 167 3.40
Kr 117 225 3.65
Xe 161 320 3.98

The total binding energy of the crystal is obtained by summing the interactions over
all pairs of atoms, remembering to divide by 2 to avoid over-counting. For a crystal with
N atoms,

UTot =

(N
2

)
4ε
∑

L 6=0

{(
σ

|L|

)12

−
(

σ

|L|

)6
}
.

A stable configuration requires that the crystal is at a minimum of the potential energy. If
the lattice spacing is varied then the lattice vectors L will change length. Let L̃ be lattice
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vectors for a lattice with primitive cells having unit volume. Then a lattice with primitive
cells having volume R3 will have lattice vectors L = RL̃. For a monatomic crystal based
on a simple cubic lattice R is the same thing as the inter-atomic spacing, but for other
Bravais lattices it is not necessarily exactly the same as the inter-atomic spacing though
it will be proportional to it. In any case the potential energy of the whole crystal is

UTot = 2N ε

{
A12

( σ
R

)12
−A6

( σ
R

)6}
, (13)

where

An :=
∑

L 6=0

1

|L̃|n
.

Varying R is the same as varying the nearest neighbour separation.
For example in a one-dimensional crystal there is an atom at each lattice site, labelled

by an integer k, L̃ = kx̂ with x̂.x̂ = 1, and L = kRx̂ so |L| = kR and

An =
∑

k 6=0

1

kn
= 2

∞∑

k=1

1

kn
.

The sum ζ(n) =
∑

k 6=0
1
kn is known as the Riemann ζ-function, and it can be calculated

analytically when n is even, for example ζ(12) = 691π12

638512857 .
For three dimensional crystals the sums will depend on the lattice type and must be

carried out numerically. For FCC lattices the results are

A6 = 14.45392 · · · , A12 = 12.13188 · · ·

(any lattice point in a FCC lattice has 12 nearest neighbours and successive terms in the
sum fall off very rapidly, particularly for A12 for which by far the greatest contribution to
the sum comes from just the nearest neighbors). The equilibrium separation R0 is obtained
by setting

dUTot

dR
= 0 ⇒ −12A12

σ12

R13
0

+ 6A6
σ6

R7
0

giving

R6
0 = 2

(
A12

A6

)
σ6 ⇒ R0 = 1.090σ.

The experimentally measured values of R0 in real crystals are

Ne Ar Kr Xe
R0

σ
1.14 1.11 1.10 1.09

The increasing discrepancies in Kr, Ar and Ne are due to quantum effects as the outer
electron shells are more and more tightly bound in the smaller atoms.
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Using R0

σ
= 1.09 in (13) gives the binding energy per atom in equilibrium

1

N UTot(R0) = −8.6ε.

Note that values of ε given above, and hence the binding energy per atom, are proportional
to the melting point of the crystals.

Ionic crystals: (e.g. NaCl, CsCl, ZnS). Crystals made up of positive and negative ions,
such as salt, in a regular array are called ionic crystals. The binding force for ionic
crystals is due to the Coulomb interaction of the positive and negative charges on the
ions. Assuming the atoms are singly ionised the binding energy is obtained from the

Coulomb energy between particles of charge ±e a distance r apart, e2

4πǫ0r
. This is a much

longer range force than that arising from the Lennard-Jones potential for inert elements.
If the separation between nearest neighbour ion pairs of opposite charge is R and the total
number of ion pairs (molecules) is N then the total electrostatic energy in the crystal is

UCol =
e2N
4πǫ0



− 1

|R| +
∑

L 6=0

(
1

|L| −
1

|L+R|

)
 . (14)

The sum over 1
L
comes from like sign ions at each lattice point and is positive because like

sign ions repel each another.
For example in a one-dimensional crystal, consisting of a regular line of molecules a

distance a apart, the nearest neighbour ionic separation is R = a
2 ,

= +ve ion
= −ve ion

R

a

and

UCol =
e2N
4πǫ0

(
· · · − 1

3R
+

1

2R
− 1

R
− 1

R
+

1

2R
− 1

3R
+ · · ·

)

=
e2N
2πǫ0

(
− 1

R
+

1

2R
− 1

3R
+ · · ·

)
= − e2N

2πǫ0R

(
1− 1

2
+

1

3
− · · ·

)
.

Note that we use N here, rather than N
2
as for the inert elements, because we are summing

over 2N ions and, dividing by one-half to avoid over-counting just reduces this to N .
We need the sum

1− 1

2
+

1

3
− · · · =

∞∑

k=1

(−1)k+1

k
.
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This is a convergent series,
∞∑

k=1

(−1)k+1

k
= ln 2, (15)

as is seen by Taylor expanding5

ln(1 + x) = x− x2

2
+

x3

3
− · · ·

⇒
x=1

ln 2 = 1− 1

2
+

1

3
− · · · . (16)

Thus

UCol = − e2Nα

4πǫ0R

with α = 2 ln 2 = 1.386294 . . ..
For a three dimensional crystal the sum over lattice points in (14) must be carried out

numerically and the dimensionless number

α = −1 +R
∑

L 6=0

(
1

L
− 1

|L+R|

)
(17)

is called the Madelung constant. Again it depends on the sequence in which the crystal
is put together and it is best to compute it by first assembling small neutral blocks and
then putting them together to form the crystal.

The Madelung constant depends on the lattice structure:

Structure α Example

SC 1.762675 CsCl
BCC 1.747565
FCC 1.6381 NaCl

The total energy includes repulsion of the atoms when they get too close to one
another, due to the exclusion principle and electron wave-function overlap — this is the
same effect as for inert elements. It can be modelled as a 1

Rm repulsive potential (for noble
gases m = 12) but, unlike the inert element case, it is not possible to obtain the form from
experiments on the gaseous phase. With this assumption the total potential is

UTot = N
(

C

Rm
− e2α

4πǫ0R

)
, (18)

5 While (15) is correct, the infinite series is convergent, it’s value depends on the order in which it is summed, it

is said to be conditionally convergent. Physically this means, for an infinite crystal, the Coulomb energy stored in the

crystal would depend on how the crystal is assembled — real crystals however are never truly infinite and the sums will

always really be finite with unambiguous values.
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where C is a positive constant. The equilibrium separation, R0, is obtained by demanding

∂UTot

∂R

∣∣∣∣
R0

= 0 ⇒ − mC

Rm+1
0

+
e2α

4πǫ0R2
0

= 0,

giving

Rm−1
0 =

4πǫ0mC

e2α
.

Putting this value of R0 into (18) gives the binding energy per ion par

UTot(R0)

N = − e2α

4πǫ0

(
m− 1

m

)
1

R0
.

The value of m does not affect the result much, as long as m is large.
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5. Crystal Vibrations – Phonons
A real crystal is not a perfect lattice, the atoms and molecules making up the crystal

will vibrate about their equilibrium positions. These vibrations will propagate through the
crystal at definite speeds, as sound waves. There will also be vibrations due to thermal
motion — a warm crystal is continuously humming!

One-dimensional crystal (monatomic basis)

To illustrate the concepts, consider again a one-dimensional monatomic crystal con-
sisting of identical atoms a distance a apart. For small amplitude vibrations we can model
the atomic vibrations by thinking of each pair of atoms being linked with a spring with
identical spring constant C > 0 for each pair, with the spring relaxed when the atoms are
a distance a apart. The restoring force on the n-th atom due to the (n+1)-th atom on its
right is F = C(x− a) (the force is to the right if x > a).

x
a

In a chain of such atoms, which are vibrating around their equilibrium positions, denote
the position of the n-th atom by xn. The equilibrium position of the n-th atom is na but
when the crystal vibrates xn 6= na in general. To construct a specific mathematical model
we need to specify boundary conditions: we choose6 N + 1 atoms and fix x0 = xN = 0.
If the atoms are vibrating xn is a function of time xn(t). Denote the displacement of the
n-th atom from its equilibrium position by un(t),

un(t) = xn(t)− na,

then the total force on the n-th atom is the sum of the forces due to the atoms on either
side,

Fn = C(xn+1 − xn − a)− C(xn − xn−1 − a) = C(un+1 − 2un + un−1).

x

5a3a 6a aN...2a0 a 4a

−u4 4

6 Alternatively we could use periodic boundary conditions on N atoms and set x0=xN without specifying its value.

For very large N which boundary conditions we choose makes little difference.
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If the mass of each atom is M , then Newton’s second law implies

Mün = C(un+1 − 2un + un−1). (19)

This gives a set of N coupled linear ODE’s for the un(t), which we can solve. The solutions
are oscillating. Using a complex notation write

un(t) = ε0e
−i(ωt−Kna) (20)

with ω, K and ε0 constants (the actual displacements are the real part of these complex
un). ω is an angular frequency, K is a wave-number (K > 0 represents waves moving to
the right and K < 0 waves moving to the left) and ε0 the amplitude of the displacement.
Using this form in (19) gives

−ω2M = C(eiKa + e−iKa − 2) = 2C(cosKa− 1) = −4C sin2
(
KA

2

)
.

Taking the positive square root we get a relation between ω and K

ω = 2

√
C

M
sin

∣∣∣∣
Ka

2

∣∣∣∣ . (21)

Since the wavenumber |K| = 2π
λ

is related to the wavelength λ equation (21) relates the
frequency to the wavelength ω(K) — it is an example of a dispersion relation.

/aπ/aπ K

ω

−

Since in (20) un+1(t)
un(t)

= eiKa = ei(K+ 2pπ
a ))a, for any integer p, we need only consider

K in the range −π
a
< K ≤ π

a
, or equivalently λ = 2π

|K| ≥ 2a, wavelengths with λ < 2a are

meaningless! This can be visualised using the figure below.
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For ease of visualisation the displacements un at one instant of time are represented ver-
tically here and the horizontal displacement represents the equilibrium position of the
atoms, na. The green curve has a wavelength one-third of the red curve, but the red curve
is perfectly adequate for representing the displacements, there is nothing to be gained by
considering the shorter wavelength.

The range of wavevectors |K| ≤ π
a

is precisely the First Brillouin zone of the one-
dimensional crystal. For N large, but still finite, we can decompose a general vibration
of the crystal into a linear superposition of normal modes. With periodic boundary con-
ditions, u0 = uN ⇒ eiKNa = 1 and so we must have KN = 2πp

a
with p an integer. So

K = 2p
N
(
π
a

)
and −π

a
≤ K ≤ π

a
⇒ p = ±1,±2, · · · , N

2
. There is a finite number, N , of

modes (p = 0 corresponds to a rigid translation of the whole crystal and is uninteresting).
In other words the allowed values of K,

K = ± 2π

Na
,± 4π

Na
,± 6π

Na
, · · · ,±π

a
,

are discrete for N finite — we get a continuum of K-values only in the N → ∞ limit.

Note that:

• For K small and positive, 0 < K << π
a
, (21) gives ω ≈

√
C
M
Ka leading to a linear

relation between frequency and wavelength with velocity

vp =
ω

K
=

√
C

M
a.

The larger the spring constant, C, i.e. the stiffer the crystal, the greater the speed of
propagation of sound waves.

• More generally, away from small K, the velocity depends on the wavelength. A wave-
packet made up of a combination of different wavelengths will tend to disperse because
long wavelengths (small K) move faster than shorter wavelengths (with K near ±π

a
).

Waves move with group velocity

vg =
dω

dK
=

√
C

M
a cos

(
Ka

2

)
.
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K

C/M

vg

a

π /a

• For small K, vg ≈ vp and the group velocity is the same as vp,
7 the dispersion relation

is linear.

• For K = ±π
a
the group velocity vg = 0: we have standing waves. The displacements

of neighbouring atoms are exactly out of phase

un+1(t)

un(t)
= eiπ = −1.

Sound waves with these wavelengths are reflected off the Brillouin zone boundary.

One-dimensional crystal (diatomic basis)

For a basis consisting of two atoms (e.g. positive and negative ions in an ionic crystal)
with different masses M1 and M2 there are further interesting phenomena. Again take the
lattice spacing to be a and suppose that the equilibrium separation between M1 and M2

atoms is a
2 (in the picture below M1 atoms are blue and M2 atoms are red).

7
vp=

ω
K
, for any K, is called the phase velocity. An observer moving with speed vp would see a constant phase

in the atomic displacements — this is not necessarily a physical velocity. In most situations energy, and other physical

quantities, are transported with the group velocity.
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a

a/2 a/2

Denote the displacements of the n-th M1 atom from equilibrium by un and that of the
n-th M2 atom by vn. For small displacements we can model the forces as springs between
nearest neighbour atoms and, for simplicity, we shall assume that the spring constants are
all the same, C. In the picture below the vertical lines represent the equilibrium positions,

0 a 2a 3a 4a

00 1 1 2uvu−vu v2 u3 −v3 −u4

Then Newton’s equations are

M1ün = C(vn − un)− C(un − vn−1) = C(vn + vn−1 − 2un)

M2v̈n = C(un+1 − vn)− C(vn − un) = C(un+1 + un − 2vn).

Looking for a (complex) solution of the form

un(t) = ε1e
i(Kna−ωt)

vn(t) = ε2e
i(Kna−ωt) ⇒ −M1ω

2ε1 = C
(
(1 + e−iKa)ε2 − 2ε1

)

−M2ω
2ε2 = C

(
(eiKa + 1)ε1 − 2ε2

)

(again the physical displacements are the real parts of the complex un(t) and vn(t).) This
can be written in matrix form

(
M1ω

2 − 2C C(1 + e−iKa)
C(1 + eiKa) M2ω

2 − 2C

)(
ε1
ε2

)
= 0.

If the matrix is invertible the only solution is ε1 = ε2 = 0, a solution with ε1 and ε2
not both zero only exists if the matrix is not invertible i.e. the determinant is zero.
This requires

M1M2ω
4 − 2C(M1 +M2)ω

2 + C2(2− eiKa − e−iKa) = 0,

or

ω2 =
C(M1 +M2)± C

√
(M1 +M2)2 − 4M1M2 sin

2
(
Ka
2

)

M1M2
.
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We see that there are now two different frequencies for each value of −π
a
≤ K ≤ π

a
,

corresponding to two different vibrational modes for each K. The lower sign (lower
frequency) requires ε1 = ε2, so M1 and M2 are oscillating in phase, while the upper
sign (higher frequency) requires ε1 = −ε2, so M1 and M2 are oscillating exactly out
of phase — while M1 is displaced to the left the adjacent M2 is displaced to the
right. These two possibilities are shown below, where the M1 atoms are red and the
M2 atoms are blue (again, for clarity, the displacements un and vn are represented
vertically and the equilibrium positions, na and

(
n+ 1

2

)
a, horizontally)

= negative ion

= positive ion

Experimentally the different modes can be preferentially excited in an ionic crystal if M1

are positive ions and M2 are negative ions. Then a passing electromagnetic wave will
push the positive and negative ions in different directions, because they are pushed in
opposite directions by an electric field. However an acoustic vibration (hit the crystal with
a hammer!) does not distinguish between positive and negative ions, they are both pushed
in the same direction by a passing acoustic wave. For a given K the lower frequency mode
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is called the acoustic mode, because it can be excited by a passing sound wave through the
crystal, while the upper frequency is called the optical mode, because it can be excited by
a passing electromagnetic wave (light) through the crystal.

The dispersion relation, shown below, has two branches, an acoustic branch and an
optical branch.

ω

acoustic

/a−π π /a K

2C/M

2C/M

2

1

optical

For K small, 0 < K << π
a
, sin2

(
Ka
2

)
≈ K2a2

4
and

ω2 =






2(M2+M2)C
M2M2

− C(Ka)2

2(M1+M2)
+ · · · Optical branch ( ε1

ε2
= −1);

C(Ka)2

2(M1+M2)
+ · · · Acoustic branch ( ε1

ε2
= 1).

For the optical branch ω2 is a maximum at K = 0, so vg = 0 there, and the dispersion
relation looks like an inverted parabola for small K, while the acoustic branch has a linear

dispersion relation, ω ≈
√

C
2(M1+M2)

aK and vg = vp =
√

C
2(M1+M2)

a.

In two dimensions there are even more possibilities. For a monatomic basis, when
there is only one mode in one dimension, there are two different modes in two dimensions,
the atoms can be displaced in the same direction as the wavevector K as shown on the left
in the picture below (a longitudinal mode) or at right-angles to the wavevector as shown
on the right in the picture below (transverse mode).
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−u
u u3

2
1

u u −u−u0 1 2 3

The amplitude ε0 in one-dimension becomes a vector, ε0, in two-dimensions, with K par-
allel to ε0 in the longitudinal case and K. ε0 = 0 in the transverse case. If the crystal
is anisotropic and the spring constants are different in different directions, the dispersion
relation will be different for the longitudinal and transverse modes.

For a diatomic 2-dimensional crystal there can be up to four modes: longitudinal
optical (LO), transverse optical (TO), longitudinal acoustic (LA) and transverse acoustic
(TA), each with a different dispersion relation

ω

/a−π π /a K

TA

TO

LA

LO
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In three dimensions there can be two different transverse optical and transverse acous-
tic modes for each frequency, giving six different modes: one LO, two TO, one LA and
two TA. The dispersion relation can become very complicated as it can be different for
different directions [hkl]. For example the dispersion relations measured experimentally in
lead (FCC), in various crystal directions, are shown below

Data are shown for wavevectors in three different directions as indicated in the Wigner-
Seitz cell of the reciprocal lattice in (b) (lead has a face centred cubic structure so the re-
ciprocal lattice is body centred cubic and the Wigner-Seitz cell is a truncated octahedron).
Γ marks the centre of the Wigner-Seitz and K traces out a triangle with sides Γ−K −X ,
X −W −X and X − Γ. Lead is not an ionic crystal and only acoustic modes appear in
the upper panel. On the line Γ−X there is only one transverse acoustic branch and this
bifurcates into two on X−W −X , which combine again into a single branch at the second
X but bifurcates again before reaching K. The direction Γ−X is [100] and Γ−K is [110].

Quantisation

To understand fully the nature of crystal vibrations it is necessary to take quantum
mechanical effects into account. In quantum mechanics a classical wave can sometimes
best be described by particles in the quantum theory. A quantum of crystal vibration is
called a phonon — a particle of sound.

The vibrations of the crystal atoms or molecules about their equilibrium positions
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can be modelled using a harmonic oscillator. In quantum mechanics the energy levels of a
harmonic oscillator are labelled by a non-negative integer n = 0, 1, 2, 3, . . . and are equally
spaced

En =

(
n+

1

2

)
h̄ω,

where ω is the characteristic frequency of the oscillator. In thermal equilibrium, in contact
with a heat bath at temperature T , the probability of a given oscillator being in energy
eigenstate n is given by the Boltzmann distribution

Pn =
e
− En

kBT

∑∞
n=0 e

− En
kBT

=
e
−(n+ 1

2 )
h̄ω

kBT

∑∞
n=0 e

−(n+ 1
2 )

h̄ω
kBT

=
yn∑∞
n=0 y

n
,

where kB is Boltzmann’s constant and y = e
− h̄ω

kBT lies in the range 0 ≤ y < 1. The denom-
inator in this expression for Pn is determined by the requirement that the probabilities
sum to one,

∑∞
n=0 Pn = 1. For y in this range

∞∑

n=0

yn =
1

1− y
⇒ Pn = yn(1− y).

The expectation value of n, i.e. its most likely value, denoted by < n >, is the weighted
sum

< n >=
∞∑

n=0

nPn = (1− y)
∞∑

n=0

nyn,

which can be evaluated using

∞∑

n=0

nyn = y
d

dy

( ∞∑

n=0

yn

)
= y

d

dy

(
1

1− y

)
=

y

(1− y)2
,

giving

< n >=
y

1− y
=

1

e
h̄ω

kBT − 1
.

This is the Planck distribution.
Label the possible crystal vibrational modes by their wavenumber K and a discrete

variable s (denoting the different modes: TO, TA, etc), then the thermal energy in vibra-
tional modes of the crystal, when it is at a temperature T , is the expectation value of the
energy

U =< E > =

〈
∑

K,s

(
nK,s +

1

2

)
h̄ωK,s

〉
=
∑

K,s

(
< nK,s > +

1

2

)
h̄ωK,s

=
∑

K

∑

s

h̄ωK,s(
e

h̄ωK,s

kBT − 1
) +

∑

K

∑

s

h̄ωK,s

2
.
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The last term on the right hand side here is a constant, independent of T , and can be
ignored in the calculation of thermal properties of crystals below.

For simplicity first consider a monatomic one-dimensional crystal, where we can ignore
s (there is only one mode for each K) and K = 2p

N
(
π
a

)
with p = ±1,±2, . . .. The

∑
K

is equivalent to
∑

p but for large N we can replace the sum with an integral,
∑

K →∫
D(ω)dω, where D(ω) denotes the number of quantum states in the frequency range ω to

ω + dω. D(ω) is called the density of states, it is calculated below. Thus we get

U =

∫ ∞

0

D(ω)h̄ω(
e

h̄ω
kBT − 1

)dω. (22)

More generally, for a polyatomic basis and/or in higher dimensions when there is more
than one mode for each K, the internal energy of the crystal is

U =
∑

s

∫ ∞

0

D(ωs)h̄ωs(
e

h̄ωs
kBT − 1

)dωs.

Density of states

To calculate D(ω), again initially in one dimension to simplify the demonstration,
consider a one-dimensional crystal with lattice spacing a and periodic boundary conditions.
The allowed wavevectors are K = 2p

N
π
a
with p±1,±2, . . ., so the spacing between successive

wavevectors is 2
N

π
a

and the number of modes in a range δK is Na
2π

δK. The number of
modes δN in a frequency range δω is therefore

δN =
dN

dω
δω = 2

(Na

2π

)
dK

dω
δω = D(ω)δω

(the extra factor of 2 here is inserted to allow for the fact that there are two modes for
each ω, one moving to the left and one to the right). Since Na = L, the length of the
crystal, this gives

(
L

π

)
dK

dω
δω = D(ω)δω ⇒ D(ω) =

(
L

π

)
dK

dω
,

and we can calculate the density of states D(ω) if we know the dispersion relation ω(K).
For example the dispersion relation (19) for a one-dimensional crystal, with ω0 =

2
√

C
M
, reads

ω(K) = ω0 sin

∣∣∣∣
Ka

2

∣∣∣∣ ⇒ dω

dK
=

a

2
ω0 cos

∣∣∣∣
Ka

2

∣∣∣∣ (K ≥ 0)

⇒ D(ω) =
2L

aπ

1

ω0

1

cos
(

|K|a
2

) =
2N
π

1√
ω2
0 − ω2
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Note that at the Brillouin zone boundary, K → π
a
, ω → ω0 and D(ω) → ∞. A

divergence in the density of states at certain characteristic frequencies is not uncommon
and is called a van Hove singularity.

In three dimensions we can use the same ideas to get the density of states. Consider
a crystal with simple cubic symmetry with N primitive cells and lattice spacing a. If
the linear dimensions are L1, L2 and L3 then the volume is V = L1L2L3 = Na3. For
simplicity we take L1 = L2 = L3 := L = N 1

3 a and assume N 1
3 is an integer, for large N

this is not a significant restriction, at least as far as intrinsic properties of the crystal are
concerned. Imposing periodic boundary conditions implies

ei(Kxx+Kyy+Kzz) = ei
(
Kx(x+L)+Ky(y+L)+Kz(z+L)

)

⇒ Kx, Ky, Kz = 0,±2π

L
,±4π

L
, . . . ,±N 1

3π

L
.

There is therefore one value of K per volume
(
2π
L

)3
= 8π3

V
in K-space. The number of

quantum modes in a volume d3K = dKxdKydKz of K-space is therefore d3N = V
8π3 d

3K.
For large N we can approximate the discrete distribution of modes in K-space by a con-
tinuum and imagine integrating over a sphere of radius K and area 4πK2 in K-space, so
the radius K is the only variable left,

V

8π3
d3K =

V

8π3
dKxdKydKz −→∫

dΩ

V

2π2
K2dK.

The number of modes inside such a sphere, with volume 4π
3
K3 (i.e. with wavenumber less

than K), is

N =
V

8π3

4π

3
K3 =

V

6π2
K3.

This now gives the three-dimensional density of states as

dN = D(ω)dω =
dN

dω
dω =

dN

dK

dK

dω
dω =

V

2π2
K2 dK

dω
dω ⇒

D(ω) =
V

2π2
K2

dK

dω
. (23)

which can be evaluated once the dispersion relation, ω(K), is known.

Debye model

The Debye model makes the simplifying assumption that the dispersion relation is
linear, ω = vK, where v = dω

dK
, the speed of sound, is independent of ω. From this we get

the density of states

D(ω) =
V

2π2

ω2

v3
.
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If there are N primitive cells in the crystal then there is a maximum frequency ωD, a
cut-off frequency, determined by

N =

∫ ωD

0

D(ω)dω =
V

2π2

1

v3

∫ ωD

0

ω2dω =
V

6π2

ω3
D

v3
⇒ ωD =

(
6π2N

V

) 1
3

v.

The maximum angular frequency ωD is called the Debye frequency. With this cut-off
the density of states for the Debye model looks like this:

ωD(   )

ωω
D

The contribution to the thermodynamic internal energy is

U =

∫ ωD

0

D(ω)h̄ω

e
h̄ω

kBT − 1
dω =

V h̄

2π2v3

∫ ωD

0

ω3dω

e
h̄ω

kBT − 1
(24)

for each polarisation. For simplicity we shall just take v to be the same for each of the
three acoustic modes, then the total internal energy is three times (24). Changing the
integration variable from ω to x = h̄ω

kBT
gives

U =
3V (kBT )

4

2π2v3h̄3

∫ xD

0

x3dx

ex − 1
,

where xD = h̄ωD

kBT
.

It is conventional to define a temperature, ΘD called the Debye temperature, by
kBΘD = h̄ωD,

ΘD =

(
6π2N

V

) 1
3 h̄v

kB
,

with N
V

:= nc the number of primitive cells per unit volume. Then xD = ΘD

T
and

U = 9NkBT

(
T

ΘD

)3 ∫ ΘD
T

0

x3dx

ex − 1
.
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U(T, V ) depends on the volume through ΘD ∝ V − 1
3 .

Other thermodynamic quantities can be obtained from U(T, V ). The heat capacity
of the crystal at constant volume, for example, is

CV =

(
∂U

∂T

)

V

.

This is most easily calculated from (24), multiplied by 3 to account for the three acoustic

modes. The only T dependence in (24) is in e
h̄ω

kBT , so

CV =
3V h̄

2π2v3
h̄

kBT 2

∫ ωD

0

ω4e
h̄ω

kBT dω
(
e

h̄ω
kBT − 1

)2 =
3V

2π2v3
k4BT

3

h̄3

∫ xD

0

x4exdx

(ex − 1)2

= 9NkB

(
T

ΘD

)3 ∫ xD

0

x4exdx

(ex − 1)2
.

The specific heat, cV = CV

V
, is plotted below:

T

3k  nB c

T

c
V

We can evaluate the integral in (24) in certain limits:

• Low temperatures: kBT << h̄ωD, xD → ∞,

∫ ∞

0

x3

ex − 1
=

∞∑

n=1

∫ ∞

0

x3e−nxdx =

∞∑

n=1

1

n4

∫ ∞

0

u3e−udx where u = nx

= Γ(4)
∞∑

n=1

1

n4
= 3!

∞∑

n=1

1

n4
=

π4

15
,

leading to thermal energy

U ≈ 3π4

5
NkBT

(
T

ΘD

)3
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and specific heat

cV =
CV

V
≈ 12π4

5

(N
V

)
kB

(
T

ΘD

)3

=
2π2

5
kB

(
kBT

h̄v

)3

. (25)

There formula are only correct for T small, in particular

lim
T→0

Cv

V T 3
=

2π2

5

k4B
(h̄v)3

is constant. This is an important result from the Debye approximation, the specific
heat due to crystal vibrations goes like ∼ T 3 at low T . For a metallic crystal there
is another contribution to the specific heat, due to electrons free to roam around the
crystal, which we shall evaluate later. It may be necessary to go temperatures as low
as T < ΘD

50 to see this T 3 behaviour.

• In the opposite limit, of high temperatures, xD << 1, we can expand 1
ex−1

=

1

x+ x2

2 + x3

6 +··· =
1
x

(
1− x

2 + x2

12 − · · ·
)
and

U ≈ 9NkBT

(
T

ΘD

)3
x3
D

3
= 3NkBT

is linear in T , hence the specific heat is constant

cV =
CV

V
≈ 3NkB

V
.

This is the classical result — constant specific is indeed observed at large T and is
known as the Dulong-Petit result. The Dulong-Petit value for the specific heat of
a crystal can be understood from the equipartition theorem: each degree of freedom
in the crystal has the same energy 1

2kBT , each atom has 3 co-ordinates labelling its
position and 3 momenta giving 6 degrees of freedom, hence the internal energy is
U = 6N kBT

2 = 3NkBT .
8 This classical result assumes that all degrees of freedom are

excited but, if T is not very large T << ΘD, not all degrees of freedom can be excited
and the specific heat is reduced

Values of ΘD for some elements are: 158◦K (Na); 400◦K (Mg); 470◦K (Fe); 2230◦K (C).

Einstein model

The linear dispersion relation, ω = vK, in the Debye model is a reasonable approxi-
mation for acoustic modes at small K, it is not a good model for optical modes in a crystal
with a polyatomic basis. Einstein suggested a simplified density of states

D(ω) = N δ(ω − ωE)

8 The internal energy of a monatomic gas is 3
2NkBT , not 3NkBT , because the degrees of freedom associated with

the positions of the atoms in an ideal gas do not contribute to the energy and so do not contribute to the internal energy.

In a crystal the position does contribute as it takes energy to move an atom away from its equilibrium position.
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in this case, where ωE is a fixed frequency and δ(ω − ωE) is a Dirac δ-function, vanishing
unless ω = ωE . The integral over x in (24) is trivial in this case: if there are p optical
modes, all with the same ωE ,

U =
pN h̄ωE

e
h̄ωE
kBT − 1

and the specific heat is

cV =

(N
V

)
(h̄ωE)

2

kBT 2

p e
h̄ωE
kBT

(e
h̄ωE
kBT − 1)2

→
{
p
(N
V

)
kB, T → ∞

p
(N
V

) (
h̄ωE

kBT

)2
kBe

− h̄ωE
kBT , T → 0.

The Einstein result is the same for large T as the Debye result, the specific heat approaches
a constant at large T , but at low T the specific heat for optical modes in the Einstein model
is much less than that of the acoustic modes in the Debye model. The two are compared
below (with p = 3): the red curve is the Debye model and blue Einstein model,

T

3k  nB c

T

c
V

It is stressed that these calculations only take into account the vibrational modes of
the crystal, any contribution from free electrons is ignored. The low T results are only valid
for crystals that are electrical insulators, metallic crystals have an extra contribution to
the specific heat coming from free electrons in the crystal. We shall see later that electrons
contribute a linear term to the acoustic mode specific heat in a metallic crystal, giving
cV ≈ AT +BT 3 at low T , with A and B constants. At very low temperatures the linear
term dominates the cubic term and the metallic specific heat is linear in T .
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π /aπ /a

ω

K−

Debye

Einstein

Both the Debye and the Einstein models are crude approximations to the dispersion re-
lation in real crystals, they are plotted in blue above and compared to the one-dimensional
diatomic results for acoustic and optical modes calculated earlier. Real crystals are more
complicated: a real experimental dispersion relation for phonons, determined by neutron
scattering, for acoustic modes in aluminium, is shown below,

ω

D(  )ω

Thermal conductivity

Heat energy in a crystal is due to vibrating atoms and so we expect phonons to
conduct heat. For simplicity consider a crystal with monatomic basis. Denote the equi-
librium energy density in phonons (lattice vibrations) by w(r) (so the internal energy is∫
crystal

w(r)dV ) and the phonon velocity by v (in the presence of a temperature gradi-

ent w(r) will vary from place to place). Now introduce a temperature gradient T (x) in
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the x-direction and let the phonon mean free path (the average distance between phonon
collisions) be l. Then the average time between phonon collisions is τ = l

v
. Any phonon

arriving at a general point r0 of the crystal has, on average, come from a sphere of radius
l centred on r0, this sphere represents the locus of points from which the phonons arriving
at r0 last scattered and w(r) will be different at different points on this sphere so, in the
presence of a temperature gradient, phonons arriving from different directions will carry
different energy — those coming from directions in which the temperature is hotter will
have greater energy than those coming from directions in which the temperature is cooler.
If T (x) is constant in the y and z-directions then w(r) will be too and w(x) depends only
on x.

cosl θ

l

θ
High TLow T

v

v

v

There will be a net flux of energy, a thermal current, in the direction of decreasing T
as heat energy diffuses from regions of higher T to lower T . The x component of v is
vx = v cos θ and, denoting an infinitesimal area element of the sphere by dA = l2 sin θdθdφ
the thermal current is

J =
1

4πl2

∫

sphere

vxw(x)dA

=
2π

4πl2

∫ π

0

(v cos θ)w(x0 − l cos θ)l2 sin θdθ

≈ v

2

∫ π

0

{
w(x0)− l cos θ

(
dw

dx

)

x0

}
cos θ sin θdθ

=
v

2

∫ 1

−1

{
w(x0)α− αl

(
dw

dx

)

x0

}
αdα (α = cos θ)

= −vl

3

(
dw

dx

)

x0

.

Now dw
dx

is related to the thermal gradient, dT
dx

, by the chain rule

dw

dx
=

dw

dT

dT

dx
.

Since there is a thermal gradient the system is not in thermal equilibrium but we still
expect the thermal energy per unit volume w(T, V ) to depend on V as well as T , dw

dT
here
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is more correctly written ∂w
∂T

∣∣
V

which is the specific heat at constant volume, cV , so

J = −cV vl

3

dT

dx
= −cV v

2τ

3

dT

dx
,

where τ = v
l
is average time between phonon collisions. The thermal conductivity, κ,

is defined as the ratio of the thermal current to the thermal gradient,

J = −κ
dT

dx
,

and we get the important result that the thermal conductivity

κ =
cV v2τ

3
(26)

is proportional to the specific heat of the crystal.
Two limiting cases:

• At high T , cV = 3kBnc is a constant. It is reasonable to expect that the collision rate
will be proportional to the phonon density,

τ−1 ∝< n >=
1

e
h̄ω

kBT − 1
≈

T→∞
kBT

h̄ω
∝ T,

Since the phonon velocity is independent of the temperature (it is determined by the
dispersion relation), we expect

κ ∝ 1/T

at high T . Experimentally κ ∝ 1
T ν with ν between 1 and 2.

• For low T , < n >≈ e
− h̄ω

kBT ⇒ τ ∝ e
h̄ω

kBT → ∞ as T → 0. Hence κ → ∞, except
that the photon mean free path l is necessarily limited by the crystal size or, more
realistically, the distribution of lattice imperfections or chemical impurities in the

crystal, so τ tends to some finite value τ0 as T → 0 and κ → cvv
2τ0
3 . In the Debye

approximation cV ∝ T 3 at low T , so

κ ∝ T 3.

Crystal momentum and Umklapp processes

We can always map any wavevector into the first Brillouin zone by adding a reciprocal
lattice vector. If K is not in the first Brillouin zone there always exists a reciprocal
lattice vector G such that K + G is. This is a three-dimensional generalisation of our
earlier observation that, for a one-dimensional crystal with lattice spacing a, we need only
consider wave-numbers |K| ≤ π

a
. If two phonons with wave-vectors K1 and K2, both in
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the first Brillouin zone, collide and merge to give a single phonon with wave-vector K′
3

then conservation of momentum says that

h̄K1 + h̄K2 = h̄K′
3, (27)

but K′
3 may not be in the first Brillouin zone. However we can always find a reciprocal

lattice vector G so that K3 = K′
3 +G is in the first Brillouin zone,

h̄K1 + h̄K2 = h̄K3 + h̄G. (28)

If G = 0 then we obviously have

h̄K1 + h̄K2 = h̄K3

identically, this called a normal process (N -process). Even if G 6= 0 it still plays no role
in the physics and equation (28) is completely equivalent to

h̄K1 + h̄K2 = h̄K3. (29)

As explained at the bottom of page 40 for a one-dimensional crystal wave-vectors outside
the first Brillouin are not important for phonon physics and the same is true in three
dimensions. (27) and (28) are indistinguishable physically. A G 6= 0 process is called
an umklapp process (U -process).9 An umklapp process involves Bragg reflection of the
final state phonon from a Brillouin zone boundary. The momentum h̄K is called the
crystal momentum and it is not conserved absolutely in an umklapp process, it is only
conserved up to a reciprocal lattice vector. Conservation laws in physics are a consequence
of symmetries of the underlying dynamics and in free space conservation of momentum is
a consequence of translation invariance. A crystal does not have translational invariance
under arbitrary small displacements, it only has translational invariance under discrete
translations by a direct lattice vector. This is a smaller symmetry than invariance under
all possible translations of any magnitude and the resulting conservation law, conservation
of crystal momentum, is less powerful than in free space — we only have conservation of
momentum up to a reciprocal lattice vector.

At a temperature T we only expect phonons with h̄ω <∼ kBT to be present and, if T is
not too high, this means ω << ωD that K1 so K2 will be small and deep within the first
Brillouin zone so thatK3 is also well within the first Brillouin zone. Umklapp processes will
then be very rare and conservation of crystal momentum is exact momentum conservation.
If this is the case then there is no dissipation in phonon collisions, momentum and energy
are conserved and we expect the thermal conductivity κ → ∞ at low T (this argument
assumes a perfect crystal and ignores impurities and imperfections in the crystal). As the
temperature increases umklapp processes become more common and momentum leaks out
of the phonons and through umklapp processes giving rise to dissipation and energy loss.
Of course the total physical momentum is still conserved, h̄G is absorbed by the crystal
as it is buffeted about by the phonons.

9 “Umklapp” means “flip over” in German.
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