Fourier Transforms

You are familiar with Fourier series for a function on an interval -7 <t < T.
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where the constants a, and b, are determined using orthogonality of the trigonometric
functions for positive integers n and n’,
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In the Fourier series 7% is a frequency,
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and for large T' the w,, are close together for successive n, approaching a continuous variable
w as T — oo. Define -
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and the sums go over to Riemann integrals as T' — oo
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It is conventional to define the cosine transform fc(w) and the sine transform fs (w)

of f(t) as .
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These integrals certainly exist if [*|f(t)|d¢ exists and is finite. The are examples of a
class of functions called integral transforms where, given a function f(t), we construct a

new function f(w) as an integral
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where K (w,t) is called the kernel of the integral transform.

If f(—t) = f(t) is an even function then f.(w) = sa(w) and if f(—t) = f(t) is an odd
function then f,(w) = 5h(w).

Another type of integral transform that is very useful in physics when periodic phe-
nomena are under consideration is is the Fourier transform,

= /_OO f(t)e™tdt. (1)

Specifying f(w) is completely equivalent to specifying f(t) because
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as we shall now show.

Using the definition of f(w) in the right hand side of (2) gives
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is a representation of the Dirac J-function (a heuristic proof is sketched below), so

/ flw “"tdw—/ St —t)f(t)dt = f(t).

Hence

- /OO f(t)ewtdt = ft) = %/OO f(w)e=“tdw.

To see that 5 [~ e~ g can be interpreted as an integral of the Dirac d-function
first note that
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it t # t/, because both the real and imaginary parts are just trigonometric functions which
oscillate with w and

/W cos(w(t — t'))dw = /W sin(w(t — '))dw = 0,
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so the integral over all w is zero too. Next when ¢ = ¢/, e~ =1 o
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so 5= [7 ew(t' =) dw is zero if t # ¢ and diverges if t = t/: these are properties of the

Dirac d-function. We can check the normalisation by setting t' = 0 and making sure that
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for any T' > 0. Evaluating

/ —/ e wldw | dt = — / e~ wtdt | dw
=T 2 —00 2 —00 =T

0o T T oo :
-1 {iei“’t} dw = l/ sin(wT) dw
-T

2 J_ o |w T ) oo W
1 [ sinu 2 [ sinu
e — 00 u T 0 u
=1

Y

where u = wT and we have used the definite integral
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While this is far from a rigorous proof that

! e “ldw = 6(t)
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it is certainly consistent with this interpretation. You will be given a more rigorous deriva-
tion of this in the Mathematical Methods II course (MP469) after Christmas.



