Fourier Transforms

You are familiar with Fourier series for a function on an interval -T < t < T.

$$f(t) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi t}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi t}{T}\right).$$

where the constants a_n and b_n are determined using orthogonality of the trigonometric functions for positive integers n and n',

$$\int_{-\pi}^{\pi} \cos(n\theta) \cos(n'\theta) d\theta = \pi \delta_{nn'} \qquad \int_{-\pi}^{\pi} \sin(n\theta) \sin(n'\theta) d\theta = \pi \delta_{nn'}$$
$$\int_{-\pi}^{\pi} \sin(n\theta) \cos(n'\theta) d\theta = 0,$$

to be

$$a_n = \frac{1}{T} \int_{-T}^{T} f(t) \cos\left(\frac{n\pi t}{T}\right) dt, \qquad b_n = \frac{1}{T} \int_{-T}^{T} f(t) \sin\left(\frac{n\pi t}{T}\right) dt$$

for positive n, while

$$a_0 = \frac{1}{2T} \int_{-T}^{T} f(t)dt.$$

In the Fourier series $\frac{n\pi}{T}$ is a frequency,

$$\omega_n = \frac{n\pi}{T},$$

and for large T the ω_n are close together for successive n, approaching a continuous variable ω as $T \to \infty$. Define

$$d\omega = \frac{\pi}{T}$$

and the sums go over to Riemann integrals as $T \to \infty$

$$f(t) = \int_0^\infty \left(a(\omega) \cos(\omega t) + b(\omega) \sin(\omega t) \right) d\omega$$

where

$$a(\omega_n) = \frac{T}{\pi} a_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos(\omega_n t) dt$$
$$b(\omega_n) = \frac{T}{\pi} b_n = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin(\omega_n t) dt.$$

It is conventional to define the cosine transform $\tilde{f}_c(\omega)$ and the sine transform $\tilde{f}_s(\omega)$ of f(t) as

$$\tilde{f}_c(\omega) := \int_0^\infty f(t) \cos(\omega t) dt$$

$$\tilde{f}_c(\omega) = \int_0^\infty f(t) \sin(\omega t) dt$$

$$\tilde{f}_s(\omega) := \int_0^\infty f(t) \sin(\omega t) dt.$$

These integrals certainly exist if $\int_0^\infty |f(t)|dt$ exists and is finite. The are examples of a class of functions called *integral transforms* where, given a function f(t), we construct a new function $\tilde{f}(\omega)$ as an integral

$$\tilde{f}(\omega) := \int_0^\infty f(t)K(\omega, t)dt$$

where $K(\omega, t)$ is called the *kernel* of the integral transform.

If f(-t) = f(t) is an even function then $\tilde{f}_c(\omega) = \frac{\pi}{2}a(\omega)$ and if f(-t) = f(t) is an odd function then $\tilde{f}_s(\omega) = \frac{\pi}{2}b(\omega)$.

Another type of integral transform that is very useful in physics when periodic phenomena are under consideration is is the *Fourier transform*,

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt. \tag{1}$$

Specifying $\tilde{f}(\omega)$ is completely equivalent to specifying f(t) because

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-i\omega t} d\omega, \tag{2}$$

as we shall now show.

Using the definition of $\tilde{f}(\omega)$ in the right hand side of (2) gives

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t') e^{i\omega t'} dt' \right) e^{-i\omega t} d\omega
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{i\omega(t'-t)} d\omega \right) f(t') dt'.$$
(3)

Now

$$\delta(t - t') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t' - t)} d\omega$$

is a representation of the Dirac δ -function (a heuristic proof is sketched below), so

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{-i\omega t} d\omega = \int_{-\infty}^{\infty} \delta(t - t') f(t') dt' = f(t).$$

Hence

$$\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt \qquad \Leftrightarrow \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega)e^{-i\omega t}d\omega.$$

To see that $\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega(t'-t)}d\omega$ can be interpreted as an integral of the Dirac δ -function first note that

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t'-t)} d\omega = 0$$

it $t \neq t'$, because both the real and imaginary parts are just trigonometric functions which oscillate with ω and

$$\int_{-\pi}^{\pi} \cos(\omega(t - t')) d\omega = \int_{-\pi}^{\pi} \sin(\omega(t - t')) d\omega = 0,$$

so the integral over all ω is zero too. Next when $t=t',\,e^{i\omega(t'-t)}=1$, so

$$\frac{1}{2\pi} \int_{-\Omega}^{\Omega} e^{i\omega(t'-t)} d\omega = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} d\omega = \frac{\Omega}{\pi} \quad \underset{\Omega \to \infty}{\longrightarrow} \quad \infty,$$

so $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(t'-t)} d\omega$ is zero if $t \neq t'$ and diverges if t = t': these are properties of the Dirac δ -function. We can check the normalisation by setting t' = 0 and making sure that

$$\int_{-T}^{T} \delta(t)dt = 1$$

for any T > 0. Evaluating

$$\int_{-T}^{T} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} d\omega \right) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-T}^{T} e^{-i\omega t} dt \right) d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\frac{i}{\omega} e^{-i\omega t} \right]_{-T}^{T} d\omega = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(\omega T)}{\omega} d\omega$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin u}{u} du = \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin u}{u} du$$

$$= 1,$$

where $u = \omega T$ and we have used the definite integral

$$\int_0^\infty \frac{\sin u}{u} du = \frac{\pi}{2}.$$

While this is far from a rigorous proof that

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} d\omega = \delta(t)$$

it is certainly consistent with this interpretation. You will be given a more rigorous derivation of this in the Mathematical Methods II course (MP469) after Christmas.