CHAPTER 8: SYSTEMS OF IDENTICAL PARTICLES

(From Cohen-Tannoudji, Chapter XIV)



Consider scattering of two quantum particles
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as the particles are indistinguishable, we cannot determine the path they followed.
— Problems: exchange degeneracy (removed by the symmetrization postulate)



Permutation operators
a) Two particle systems

E(1) @ E(2)
{|1 DU 2 uj)}
Note
Liup2iu)y #(0iuis2upy  ifi#j
The permutation operator
Pyl iu2:ujpy = 12:uil:u))
= |1 :uj2:u)

The order of the vectors in a tensor product is of no importance.



b)The permutation operator P>
A2 .
(le) = 1
pT
Pl Py = Py Pl =1 (unitary)

P51 (self adjoint)

c) Symmetric and antisymmetric kets

Symmetrizer and antisymmetrizer
PT = P»| = the eigenvalues of P»; must be real
(P21)2 = 1 = the eigenvalues are

+1 (symmetric)  —1 (antisymmetric)

Poilws) = sy Porlpa) = —lwa)

(8.9)
(8.10)



Consider the operators

that are complementary

If i) is an arbitrary ket in &,
S|w) is a symmetric ket and
Aly) is an antisymmetric ket

Py Sty =Sy  PyAly) = -Aly)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)



Transformation of observables by permutation

B(1) — defined in &(1), and extended to &

{lu;)} — the basis in &(1) from eigenvectors of B(1) (with eigenvalues b;)

Py BOOP) 11 uis2 i uj) =

13213(1)16;1
Py1B)P],

Py [B() + C@)| P,
Py B(HYCQ)P],

PyyBOIL :ujs2 - up)
biPyill i ujs2 g
bj|1 . u,-;2 . uj)

= B2

= B(1)

= BQ2)+C)
= B2)C()



Generalization

Py0(1,2)P], = 0@2,1) (8.23)

where O(1,2) is any observable in & which can be expressed in terms of observables
of the type B(1) and C(2).

Symmetric observables commute with the permutation operators:

Os(1,2) = Os(2,1) (8.24)
P7105(1,2) = 05(1,2)Py (8.25)
= [05(1,2). P51 = 0 (8.26)



An arbitrary number of particles
Example 3 particles

{|1 DU 2 uj;3 : uk)}
Six permutations
p123ap321,p231ap132ap213,f)312
f’npqll Tup2iup3iug) = piugiqgoug)

(N'! permutation operators in a system of N particles with the same spin.)



Any permutation operator can be broken down into a product of transposition (i.e.

pairwise exchange) operators, for example

P31 = P132P213 = P31P132=...

even parity of Pz,

even:  Pip3, P3p1, Pp3
odd: P37, P13, P32

For any N, there are always as many even permutations as there are odd.

Permutation operators are unitary and constitute a group.

(8.30)



Completely symmetric or antisymmetric kets. Symmetrizer and antisymmetrizer.

Completely symmetric

Polyrsy = lys)  forany P (8.33)
Completely antisymmetric
paWA) = Ea A) for any Pa (8.34)

+1 for even, -1 for odd

. A 1 A _
Symmetrizer § = A Z P, projects onto &g (8.35)
a

1

o Z gqPq projects onto E4 (8.36)
B

Antisymmetrizer A



The symmetrization postulate

When a system includes several identical particles, only certain kets of its state space
can describe its physical states. Physical kets, depending on the nature of the iden-
tical particles, are either

completely symmetric (bosons — integral spin)
or

completely antisymmetric (fermions — half-integral spin)

with respect to permutation of these particles.



Construction of physical kets
(i) number the particles arbitrarily, and construct the ket |u) corresponding to the
physical state considered and to the numbers given to the particles

(i) apply S or A to |u), depending on whether identical particles are bosons or
fermions

(iif) normalize the ket so obtained.




Example: 2 particle system

(i) ) =11:9;2: x)
(i) If particles are bosons, symmetrize |u)

. 1
Sluy = §[|1:¢;2:X>+|1:X;2:<,0>] (8.37)
If they are fermions, antisymmetrize |u)
. 1
Aluy = i[ll @32 x) =11 ;20 )] (8.38)
(i) normalize
1
o xy = —=[1:@:2:x)+€ll: x;2: )] (8.39)
V2

€ = +1 for bosons, —1 for fermions



Assume that the individual states |¢), |y) are identical

) = b (8.40)

then

uy = |1:¢;2:¢) (8.41)

Is already symmetric.
If the two particles are bosons, the ket |[u) = |1 : ¢;2 : ¢) is the physical ket associated
with the states in which the two bosons are in the same individual state |p).



If the two particles are fermions,

) 1
A|u>=§[|1:90;2:90>—|1:90;2:90>] = 0 (8.42)

There is no ket of &4 able to describe the physical state in which two fermions are in
the same individual state |p).

Pauli’s exclusion principle
Two fermions cannot be in the same individual state.




Generalization to an arbitrary N > 2

Example N =3

a) Bosons

S |u)

) = 1:9:2:x:3: w)

1 A
57 2 Polu)
T

1

g[ll:90;2:)(;3:a))+|1:w;2:<p;3:)()
+H1l:xv;2:w;3:0)+1|1:¢;2: w;3:x)
+1:x:2:0;3:w)+11:w;2:x:3: )]

(8.43)

(8.44)

(8.45)
(8.46)
(8.47)



Normalization
1) o), ly), |w) are orthogonal
replace 1/6 by 1/ V6

2) If two states are the same and are orthogonal then
1
;0 W) = $[|1 L2 ;3w F ;2 w3 ) (8.48)
+H1:w;2:¢;3: )] (8.49)

3) If three states are the same

lo; 0,0y = [1:¢0;2:¢0;3: @) (8.50)



) Fermions

) | )
Aluy = 5Zgapau 012 v: 3 W) (8.51)

(07

The signs of the various terms are determined by the same rule as those of a 3 x 3
determinant

Slater determinant

A e o nw)
Ay = 5|9y Ry 12:w) (8.52)
By Bix) [B:w)




Pauli exclusion principle:

Alu) is zero if two of the individual states coincide since the determinant then
has two identical columns.

Normalization:
If the three individual states are orthogonal replace 1/3! by 1/ V3!.



