
CHAPTER 7: APPROXIMATION METHODS FOR TIME-DEPENDENT
PROBLEMS

(From Cohen-Tannoudji, Chapter XIII)



A. STATEMENT OF THE PROBLEM

Consider a system with Hamiltonian Ĥ0; its eigenvalues and eigenvectors are

Ĥ0|ϕn〉 = En|ϕn〉 (7.1)

(Ĥ0 is discrete and non-degenerate for simplicity.)

At t = 0, a perturbation is applied

Ĥ(t) = Ĥ0 + W(t) = Ĥ0 + λŴ(t) (7.2)

where λ � 1, and Ŵ(t) = 0 for t < 0:

t < 0 t = 0 t > 0
stationary state W(t) final state
|ϕi〉 evolution starts |ψ(t)〉
eigenstate of Ĥ0 (|ϕi〉 is not eigenstate of Ĥ)



What is the probability P f i(t) of finding the system in another eigenstate |ϕ f 〉 of Ĥ0
at time t?

Treatment: solve the Schrödinger equation (S. E.)

i~
d
dt
|ψ(t)〉 =

[
Ĥ0 + λŴ(t)

]
|ψ(t)〉 (7.3)

with the initial condition |ψ(0)〉 = |ϕi〉

⇒ P f i(t) =
∣∣∣〈ϕ f |ψ(t)〉

∣∣∣2 (7.4)

In generally this problem is not rigorously soluble!
⇒ we need APPROXIMATION METHODS



B. APPROXIMATE SOLUTION OF THE SCHRÖDINGER EQUATION
1. The Schrödinger equation in the {|ϕn〉} representation
We will use the {|ϕn〉} representation which is convenient as |ϕi〉 and |ϕ f 〉 are eigen-
states of Ĥ0, and obtain the differential equations for the components of the state
vector

|ψ(t)〉 =
∑

n
cn(t)|ϕn〉 (7.5)

cn(t) = 〈ϕn|ψ(t)〉 (7.6)
Ŵnk(t) = 〈ϕn|Ŵ(t)|ϕk〉 (7.7)

and 〈ϕn|Ĥ0|ϕk〉 = Enδnk (7.8)

We will project both sides of S.E. onto |ϕn〉 (and use
∑

k |ϕk〉〈ϕk| = 1̂):

i~
d
dt
|ψ(t)〉 =

[
Ĥ0 + λŴ(t)

]
|ψ(t)〉 (7.9)

⇒ i~
d
dt

cn(t) = Encn(t) +
∑

k
λŴnk(t)ck(t) (7.10)



Changing functions
If λŴ(t) = 0 then the equations decouple

i~
d
dt

cn(t) = Encn(t) (7.11)

and yield simple solution

cn(t) = bne−iEnt/~ (7.12)

where bn is a constant depending on the initial conditions.
If λŴ(t) , 0 and λ � 1, we expect the solutions cn(t) of the full equations to be very
close to the solution above (for λŴ(t) = 0), and thus if we perform the change of
function

cn(t) = bn(t)e−iEnt/~ (7.13)

we can predict that bn(t) will be slowly varying functions of time.



Substituted into the equation gives

i~e−iEnt/~ d
dt

bn(t) + Enbn(t)e−iEnt/~

= Enbn(t)e−iEnt/~ +
∑

k
λŴnk(t)bk(t)e−iEkt/~ (7.14)

Multiplying both sides by eiEnt/~ and introducing the Bohr frequency ωnk =
En−Ek
~

gives

i~
d
dt

bn(t) = λ
∑

k
eiωnktŴnk(t)bk(t) (7.15)



2. Perturbation equations

In general, the solution is not known exactly and, for λ � 1, we try to determine this
solution in the form of a power series in λ

bn(t) = b(0)
n (t) + λb(1)

n (t) + λ2b(2)
n (t) + . . . (7.16)

and substitute it into the equation, and set equal the coefficients of λr on both sides
of the equation

i) r = 0 : i~
d
dt

b(0)
n (t) = 0 (7.17)

ii) r , 0 : i~
d
dt

b(r)
n (t) =

∑
k

eiωnkt/~Ŵnk(t)b(r−1)
k (t) (7.18)

RECURRENCE!



3. Solution to the first order in λ

a. The state of the system at time t

t < 0 : |ϕi〉 i.e. bi(t) , 0, bk(t) = 0∀k , i (7.19)

t = 0 : Ĥ0 → Ĥ0 + λŴ and solution of S.E. is continuous at t = 0 (7.20)

⇒ bn(t = 0) = δni ∀λ (7.21)

⇒ b(0)
n (t = 0) = δni (7.22)

⇒ b(r)
n (t = 0) = 0 if r ≥ 1 (7.23)

and with i~ d
dtb

(0)
n (t) = 0 we get

0th-order solution: b(0)
n (t) = δni for all t > 0



1st − order: i~
d
dt

b(1)
n (t) =

∑
k

eiωnktŴnk(t)δki (7.24)

= eiωnitŴni(t) (7.25)

By integration b(1)
n (t) =

1
i~

∫ t

0
eiωnit′Ŵni

(
t′
)

dt′ (7.26)

cn(t) = bn(t)e−iEnt/~ ≈
(
b(0)

n (t) + λb(1)
n (t)

)
e−iEnt/~ (7.27)

to the first order time-dependent perturbation theory we get the state of the system
at time t calculated to the first order:

|ψ(t)〉 ≈
∑

n
cn(t)|ϕn〉 (7.28)



b. The transition probability Pi f (t)

∣∣∣c f (t)
∣∣∣2 =

∣∣∣〈ϕ f |ψ(t)〉
∣∣∣2 = Pi f (t) (7.29)

c f (t) = b f (t)e−iE f t/~ (7.30)

⇒ Pi f (t) =
∣∣∣b f (t)

∣∣∣2 (7.31)

where b f (t) = b(0)
f (t) + λb(1)

f (t) + . . .

Let us assume |ϕi〉 and |ϕ f 〉 are different (i.e. we are concerned only with transition
induced by λŴ between two distinct stationary states of Ĥ0):
b(0)

f (t) = 0 and consequently

Pi f (t) = λ2
∣∣∣∣b(1)

f (t)
∣∣∣∣2 (7.32)



and using the formula for b(1)
n (t) we get

Pi f (t) =
1
~2

∣∣∣∣∣∣∣∣∣∣∣
∫ t

0
eiω f it′ W f i

(
t′
)︸  ︷︷  ︸

W(t)=λŴ

dt′

∣∣∣∣∣∣∣∣∣∣∣
2

(7.33)

Consider the function W̃ f i(t′) which is zero for t′ < 0 and T ′ > t and is equal to
W f i(t′) for 0 ≤ t′ ≤ t.
W̃ f i(t′) is the matrix element of the perturbation “seen” by the system between the
time t = 0 and the measurement time t, when we try to determine if the system is in
the state |ϕ f 〉.
Pi f (t) is proportional to the square of the modulus of the Fourier transform of the
perturbation actually “seen” by the system, W̃ f i(t).



C. SPECIAL CASE: A SINUSOIDAL OR CONSTANT PERTURBATION

Ŵ(t) = Ŵ sinωt or
Ŵ(t) = Ŵ cosωt
Ŵ is a time independent observable and ω a constant angular frequency.

(Example: electromagnetic wave of angular frequency ω.
Pi f (t) is the probability, induced by monochromatic radiation, of a transition between
the initial state |ϕi〉 and the final state |ϕ f 〉.)

Ŵ f i(t) = Ŵ f i sinωt =
Ŵ f i

2i

(
eiωt − e−iωt

)
(7.34)

Ŵ f i is a time independent complex number and

b(1)
n (t) = −

Ŵni
2~

∫ t

0

[
ei(ωni+ω)t′ − ei(ωni−ω)t′

]
dt′ (7.35)



=
Ŵni
2i~

1 − ei(ωni+ω)t

ωni + ω
−

1 − ei(ωni−ω)t

ωni − ω

 (7.36)

The transition probability becomes

Pi f (t;ω) = λ2
∣∣∣∣b(1)

f (t)
∣∣∣∣2 =

∣∣∣W f i
∣∣∣2

4~2

∣∣∣∣∣∣∣∣1 − ei
(
ω f i+ω

)
t

ω f i + ω
−

1 − ei
(
ω f i−ω

)
t

ω f i − ω

∣∣∣∣∣∣∣∣
2

(7.37)

(Pi f depends on the frequency of the perturbation)

If Ŵ f i(t) = Ŵ f i cosωt,

Pi f (t;ω) =

∣∣∣W f i
∣∣∣2

4~2

∣∣∣∣∣∣∣∣1 − ei
(
ω f i+ω

)
t

ω f i + ω
+

1 − ei
(
ω f i−ω

)
t

ω f i − ω

∣∣∣∣∣∣∣∣
2

(7.38)



Constant perturbation ω = 0

Pi f (t;ω) =

∣∣∣W f i
∣∣∣2

~2ω2
f i

∣∣∣∣1 − eiω f it
∣∣∣∣2 =

∣∣∣W f i
∣∣∣2

~2
F

(
t;ω f i

)
(7.39)

F
(
t;ω f i

)
=

sin
(
ω f it/2

)
ω f i/2


2

(7.40)



2. Sinusoidal perturbation which couples discrete states: resonance
a. Resonant nature of the transition probability
When t is fixed, Pi f (t;ω) is a function of one variable ω. This function has a maximum
for ω ' ω f i or ω ' −ω f i; this is a resonance phenomenon (choose ω ≥ 0)



Pi f (t;ω) =

∣∣∣Ŵ f i
∣∣∣2

4~2

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 − ei

(
ω f i+ω

)
t

ω f i + ω︸           ︷︷           ︸
A+

−
1 − ei

(
ω f i−ω

)
t

ω f i − ω︸           ︷︷           ︸
A−

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(7.41)

A+ = −iei
(
ω f i+ω

)
t/2 sin

[(
ω f i + ω

)
t/2

](
ω f i + ω

)
/2︸         ︷︷         ︸

goes to zero for ω=−ω f i

(7.42)

This term is anti-resonant for ω = ω f i (and resonant for ω = −ω f i)



Resonant term

A− = −iei
(
ω f i−ω

)
t/2sin

[(
ω f i − ω

)
t/2

](
ω f i − ω

)
/2

(7.43)

Consider the case
∣∣∣ω − ω f i

∣∣∣ � ω f i (this is the resonant approximation):
1st order transition probability:

Pi f (t;ω) =

∣∣∣W f i
∣∣∣2

4~2
F

(
t;ω − ω f i

)
(7.44)

F
(
t;ω − ω f i

)︸           ︷︷           ︸
sinc function

=

sin
[(
ω f i − ω

)
t/2

](
ω f i − ω

)
/2


2

(7.45)





b. The resonance width and time-energy uncertainty relation

The most of the resonant peak is concentrated around the resonant frequency ω f i,

for example at

(
ω−ω f i

)
t

2 = 3π
2 we get the transition probability

∣∣∣W f i
∣∣∣2t2

9π2~2
which is approx-

imately 5% of the transition probability at the resonance.

We can define the width of the resonant peak as the difference between the frequen-
cies of the minima of Pi f around the resonant frequency, see the figure, then

∆ω '
4π
t

(7.46)

which is analogous to the time-energy uncertainty relation ∆E = ~∆ω ' ~t



c. Validity of the perturbation treatment
a) Discussion of the resonant approximation
A+ has been neglected relative to A−:
|A−(ω)|2 sinc function

|A+(ω)|2 = |A−(−ω)|2 �
∣∣∣∣A− (

ω f i
)∣∣∣∣2 (7.47)

The resonant approximation is justified on the condition

2
∣∣∣ω f i

∣∣∣ >> ∆ω (7.48)

that is

t︸︷︷︸
duration of the perturbation

>>
1∣∣∣ω f i

∣∣∣ ' 1
ω︸︷︷︸

oscillation period

(7.49)



b) Limits of the first-order calculations
If t becomes too large, the first-order approximation can cease to be valid (i.e. giving
infinit transition probability which is physically a nonsense):

lim
t→∞
Pi f

(
t;ω = ω f i

)
= lim

t→∞

∣∣∣W f i
∣∣∣2

4~2
t2 = ∞ (7.50)

For the first-order approximation to be valid at resonance, Pi f (t;ω = ω f i) � 1:

t �
~∣∣∣W f i

∣∣∣ (7.51)



3. Coupling with the states of the continuum

E f belongs to a continuous part of the spectrum of Ĥ0
⇓

We cannot measure the probability of finding the system in a well-defined state |ϕ f 〉

at time t
⇓

We have to integrate over probability density
∣∣∣〈ϕ f |ψ(t)〉

∣∣∣2 over a certain group of final
states.



a. Integration over a continuum of final states; density of states

a) Example
– spinless particle of mass m
– scattering by a potential W(~r)

E = ~p2/2m, |ψ(t)〉 can be expanded in terms of |~p〉
The corresponding wavefunctions are plane waves

〈~r|~p〉 =

(
1

2π~

)3/2
ei~p·~r/~ (7.52)

The probability density ∣∣∣〈~p|ψ(t)〉
∣∣∣2 (7.53)



Detector gives a signal when the particle is scattered with the momentum ~p f but
since it has a finite aperture it really gives the signal when the particle has momentum
in a domain D f of ~p-space around ~p f (δΩ f , δE f )

δP
(
~p f , t

)
=

∫
~p f∈D f

d3~p
∣∣∣〈~p|ψ(t)〉

∣∣∣2 (7.54)

d3~p = p2dp dΩ︸︷︷︸
solid angle around ~p f

= ρ(E)︸︷︷︸
density of final states

dEdΩ

ρ(E) = p2 dp
dE

= p2m
p

= m
√

2mE (7.55)

δP
(
~p f , t

)
=

∫
Ω∈δΩ f ,E∈δE f

dΩdE ρ(E)
∣∣∣〈~p|ψ(t)〉

∣∣∣2 (7.56)



b) The general case
Eigenstates of Ĥ0, labeled by a continuous set of indices

〈α|α′〉 = δ(α − α′) (7.57)

at time t: |ψ(t)〉

δP
(
α f , t

)
=

∫
α∈D f

dα |〈α|ψ(t)〉|2 (7.58)

Change variables and introduce density of final states

dα = ρ(β, E)dβdE (7.59)

δP
(
α f , t

)
=

∫
β∈δβ f ,E∈δE f

dβdE ρ(β, E) |〈β, E|ψ(t)〉|2 (7.60)



Fermi’s Golden Rule

Let |ψ(t)〉 be the normalized state vector of the system at time t.

Consider a system which is initially in an eigenstate |ϕi〉 of Ĥ0 (in discrete part of
spectrum)

δP
(
ϕi, α f , t

)
= ? (7.61)

The calculations for the case of a sinusoidal or constant perturbation remain valid
when the final state of the system belongs to the continuous spectrum of Ĥ0



For W constant

|〈β, E|ψ(t)〉|2 =
1
~2
|〈β, E|W |ψ(t)〉|2 F

(
t;

E − Ei
~

)
(7.62)

E – energy of the state |β, E〉
Ei – energy of the state |ϕi〉

δP
(
ϕi, α f , t

)
=

1
~2

∫
β∈δβ f ,E∈δE f

dβdE ρ(β, E) |〈β, E|W |ψ(t)〉|2 F
(
t;

E − Ei
~

)
(7.63)

F
(
t; E−Ei
~

)
varies rapidly about E = Ei; for sufficiently large t, this function can be

approximated, to within a constant factor, by the δ-fucntion δ (E − Ei):

lim
t→∞

F
(
t;

E − Ei
~

)
= πtδ

(E − Ei
2~

)
= 2π~tδ (E − Ei) (7.64)



The function ρ(β, E) |〈β, E|W |ψ(t)〉|2 varies much more slowly with E. We will assume
that t is sufficiently large for the variation of this function over an energy interval of
width 4π~/t centered at E = Ei to be negligible.

⇒ We can replace F
(
t; E−Ei
~

)
by 2π~tδ (E − Ei) which allows us to integrate over E

immediately.



If, in addition, δβ f is very small, integration over β is unnecessary and we get
(a) Ei ∈ δE f

δP
(
ϕi, α f , t

)
= δβ f

2π
~

t
∣∣∣〈β f , E f = Ei|W |ϕi〉

∣∣∣2 ρ (
β f , E f = Ei

)
(7.65)

(b) Ei < δE f

δP
(
ϕi, α f , t

)
= 0 (7.66)

⇒ A constant perturbation can induce transitions only between states of equal ener-
gies, and thus (b) holds.



The probability (a) increases linearly with t.
⇒We can define

• transition probability per unit time δW
(
ϕi, α f

)
δW

(
ϕi, α f

)
=

d
dt
δP

(
ϕi, α f , t

)
(7.67)

which is time independent

• transition probability density per unit time and per unit interval of the variable β f

w
(
ϕi, α f

)
=

δW
(
ϕi, α f

)
δβ f

(7.68)



Fermi’s Golden Rule

w
(
ϕi, α f

)
=

2π
~

∣∣∣〈β f , E f = Ei|W |ϕi〉
∣∣∣2 ρ (

β f , E f = Ei
)

(7.69)

Assume that W is a sinusoidal perturbation which couples a state |ϕi〉 to the contin-
uum of states |β f , E f 〉 with energies E f close to Ei + ~ω. We can carry out the same
procedure as above:

w
(
ϕi, α f

)
=

π

2~

∣∣∣〈β f , E f = Ei + ~ω|W |ϕi〉
∣∣∣2 ρ (

β f , E f = Ei + ~ω
)

(7.70)


