CHAPTER 7: APPROXIMATION METHODS FOR TIME-DEPENDENT
PROBLEMS

(From Cohen-Tannoudji, Chapter XIlII)



A. STATEMENT OF THE PROBLEM

Consider a system with Hamiltonian Hy; its eigenvalues and eigenvectors are

Holgn) = Enlen) (7.1)
(Hy is discrete and non-degenerate for simplicity.)

At t = 0, a perturbation is applied

H() = Hy+ W) = Hy+ AW() (7.2)
where 1 < 1, and W(¢) = 0 for ¢ < 0:

t<0 t=0 t >0
stationary state W(t) final state
|o;) evolution starts (1))

eigenstate of A (lg;) is not eigenstate of H)



What is the probability # ¢;(r) of finding the system in another eigenstate |¢ ) of Hy
at time ¢?

Treatment: solve the Schrddinger equation (S. E.)

d A .
iAW) = |Ho+ AW ®| (@) (7.3)

with the initial condition |¥/(0)) = |¢;)

= P = e pw)| (7.4)

In generally this problem is not rigorously soluble!
= we need APPROXIMATION METHODS



B. APPROXIMATE SOLUTION OF THE SCHRODINGER EQUATION

1. The Schrodinger equation in the {|¢,)} representation

We will use the {|¢;;)} representation which is convenient as |¢;) and o f) are eigen-
states of Hy, and obtain the differential equations for the components of the state
vector

w®) = > ca®lgn) (7.5)
() = {gnld(®) (7.6)
Wuk®) = (enlWDler) (7.7)
and (enlHolek) = Endnk (7.8)
We will project both sides of S.E. onto |¢,,) (and use > i l¢r){erl = i):
d A ]

i) = |Ho+ W0 () (7.9)

d )
= incn(t) = Encn(h) + Z AW, (D (D) (7.10)



Changing functions
If AW(r) = 0 then the equations decouple

. d

lhgcn(t) = Eucn(2) (7.11)
and yield simple solution

cn(t) = bpe Entlh (7.12)

where b, is a constant depending on the initial conditions.

If AW(7) £ 0 and 1 < 1, we expect the solutions ¢,(¢) of the full equations to be very
close to the solution above (for AW(¢) = 0), and thus if we perform the change of
function

cn(®) = by(t)e Entlh (7.13)

we can predict that b, (¢) will be slowly varying functions of time.



Substituted into the equation gives

: d :
ifie Ent/h—by, () + Epbu(t)e” Ent/

dr
= Enbn(ne™ P17 1 ) AW(0)by(nye” FHI (7.14)
k
Multiplying both sides by ¢:£n!/" and introducing the Bohr frequency w,; = —E”%Ek

gives

d ’ A
ih—bu(t) = A ) W (0)by() (7.15)
dr -



2. Perturbation equations

In general, the solution is not known exactly and, for 1 < 1, we try to determine this
solution in the form of a power series in A

bat) = BV + V@) + 26D + ... (7.16)

and substitute it into the equation, and set equal the coefficients of A" on both sides
of the equation

d

)r=0: ihEb,(,?)(r) - 0 (7.17)

) d . ) »

iy r#0: zhEb,({)(t) = ) efend! Wb V(o) (7.18)
k

RECURRENCE!



3. Solution to the first order in A

a. The state of the system at time ¢

£<0: ;) i€ bit) £ 0,by(t) = 0Vk # i (7.19)
t=0: Hy— Hy+ AW and solution of S.E. is continuous att = 0  (7.20)
= by(t = 0) = 6,; YA (7.21)
= bV =0) =5, (7.22)
b t=0)=0ifr>1 (7.23)

and with ih%b,go)(t) = 0 we get

0™-order solution: bﬁf’)(t) =0, forallt >0



d S
15t — order: ihab,(,ll)(t) = ) W, ()8 (7.24)

k
= @nilyy, (1) (7.25)
- (D) U7 ionit G (7Y gy
By integration b,,’(t) = — e Wm-(t)dt (7.26)
ih Jo
en(t) = ba@e Entlt < (690 + V(1)) e~ Ent/ (7.27)

to the first order time-dependent perturbation theory we get the state of the system
at time ¢ calculated to the first order:

W) ~ > cal®dlipn) (7.28)

n



b. The transition probability #; ()

e = e = i) (7.29)
cp(t) = bptye st/ (7.30)
S Py = |b)| (7.31)

_ 1,0 (D
where b¢(t) = bf (7) +/lbf () +...
Let us assume |p;) and |¢ f) are different (i.e. we are concerned only with transition
induced by AW between two distinct stationary states of Hy):

bgf))(t) = 0 and consequently

2
Pyt = b (7.32)



and using the formula for b,gl)(t) we get

2
P. — i t icuf,-t’ oy ’
g0 = = K Wy (¢') de (7.33)
~——
W()=AW

Consider the function Wy;(z") which is zero for ¥ < 0 and 77 > r and is equal to
Weit)for0 <t <t.

Wf,-(t’) is the matrix element of the perturbation “seen” by the system between the
time r = 0 and the measurement time ¢, when we try to determine if the system is in
the state ¢ 1)

P, (1) is proportional to the square of the modulus of the Fourier transform of the
perturbation actually “seen” by the system, W¢;(7).



C. SPECIAL CASE: A SINUSOIDAL OR CONSTANT PERTURBATION

W(t) = W sin wt or
W(t) = W cos wt
W is a time independent observable and w a constant angular frequency.

(Example: electromagnetic wave of angular frequency w.
P, (1) is the probability, induced by monochromatic radiation, of a transition between
the initial state |¢;) and the final state [¢¢).)

%( iwt e—ia)t) (7.34)

Wfi(t) = Wf, sin wt = >;

Wi is a time independent complex number and

b’gl)(t) _ Wm f z(a)m+a))t Si(wni— w)t]d (7.35)



Wni 1 — ellwnitw)t 1 _ pilwpi—w)t
= 5 - (7.36)
2ih Wyi + W Wy — W
The transition probability becomes
0 . : 2
) |Wfi| 1 — ez(wfi+a))t 1 — ez(wfi—a))t
Pt w) = 2 PP = - 7.37
i 5) ‘f()' 412 W+ w W — W (7.37)
f f
(P;r depends on the frequency of the perturbation)
If Wei(t) = Wyicos wr,
. . 2
|Wfi|2 1 — el(wﬁ+w)t 1 — el(wf,-—a))t
Pirtw) = + (7.38)
472 Wi+ W W — W




Constant perturbation w = 0

Pirt,w) =

F(twp) (7.39)

2
. it]2
Fnop) = [Smi‘:;z W (7.40)




2. Sinusoidal perturbation which couples discrete states: resonance

a. Resonant nature of the transition probability

When ¢ is fixed, P;¢(#; w) is a function of one variable w. This function has a maximum
for w ~ wy; or w = —wyy; this is a resonance phenomenon (choose w > 0)

Resonant absorption Stimulated emission
E, E,
. 97 . U
hw hw
v
E E.




2
A 12 : :
W ¢ _ z(wfi+a))t _ z(wfi—a))t
Pirt,w) = / ;' e _L-e (7.41)
4h W+ w W — W
A, A
A.|_ _ _iei(a)fi+cu)t/2 Sin [(wfl + Cl)) t/2:| (742)

(a)f,- + a)) /2
goes to zero for w=-wy;

This term is anti-resonant for w = wy; (and resonant for w = —w¢;)



Resonant term

i(wfi—a))t/2 sin [(wfi B w) t/Z]

A. = —ie (7.43)
(a)f,- — a)) /2
Consider the case |w — wf;| < wy; (this is the resonant approximation):
15t order transition probability:
2
[Wri
Piptiw) = = Ftw-wp) (7.44)
2
sin{lwr; —w)t/2
Flho-wp) = (ri= )] (7.45)
: : ((Ufl - w) /2
sinc function



. (w— {,qﬁ)."/E’ =
A ((w— {,L,W"I/Z = 3n/2




b. The resonance width and time-energy uncertainty relation

The most of the resonant peak is concentrated around the resonant frequency wy;,

22
—wWfit . - W i
for example at C ;)f) = 37” we get the transition probability |97]:2|h;

imately 5% of the transition probability at the resonance.

which is approx-

We can define the width of the resonant peak as the difference between the frequen-
cies of the minima of ;¢ around the resonant frequency, see the figure, then

4
A

Aw = (7.46)

which is analogous to the time-energy uncertainty relation AE = hAw =

~|S*



c. Validity of the perturbation treatment
a) Discussion of the resonant approximation
A+ has been neglected relative to A_:
IA_(w)|* sinc function

A+()* = |A—(~w)? <¢‘A—09ﬁ)2

The resonant approximation is justified on the condition

2|wp| >> Aw

that is
, [ 1
on ot Fepersaion sl o
duration of the perturbation fi ——

oscillation period

(7.47)

(7.48)

(7.49)



b) Limits of the first-order calculations
If t becomes too large, the first-order approximation can cease to be valid (i.e. giving
infinit transition probability which is physically a nonsense):

|2

W ..
lim P;¢ (w = wp;) = lim W 2 = oo (7.50)

f—o0 f—o00 4h2

For the first-order approximation to be valid at resonance, P,-f(t; w=wr) <1

h
I K —— (7.51)

Wi



3. Coupling with the states of the continuum

E ¢ belongs to a continuous part of the spectrum of Hy

U

We cannot measure the probability of finding the system in a well-defined state ¢ f)
attime ¢

U

We have to integrate over probability density |<90f|gb(t)>|2 over a certain group of final
states.



a. Integration over a continuum of final states; density of states

a) Example
— spinless particle of mass m
— scattering by a potential W(7)

E = 32/2m, [y(1)) can be expanded in terms of |7)
The corresponding wavefunctions are plane waves

N — |2 Ip-r
(Fp) (27rh) e

The probability density
2
WO

(7.52)

(7.53)



Detector gives a signal when the particle is scattered with the momentum ﬁf but
since it has a finite aperture it really gives the signal when the particle has momentum
in a domain D¢ of p-space around ¢ (6€27,0E ¢)

- — 2
P (i) = [ Eplowol (7.54)
prDf
3> _ 2 _
d'p = pdp dQ = o(E) dEdQ

solid angle around 5y density of final states

d
po(E) = pzd—g = pZT =mN2mE (7.55)
P

f dQAE p(E) [( A (7.56)
QEéQf,EE(SEf



b) The general case
Eigenstates of Hy, labeled by a continuous set of indices

(ald’) = o6(a—a) (7.57)

at time ¢: [y(1))

5P (a £ r) — f da Ky ()] (7.58)
aeDf
Change variables and introduce density of final states

da = p(B, E)BIE (7.59)

6P (1) = dBAE p(B, E) B, Ely(1)” (7.60)

j,;€5,3f,E€5Ef



Fermi’s Golden Rule

Let |(2)) be the normalized state vector of the system at time .

Consider a system which is initially in an eigenstate |¢;) of Hy (in discrete part of
spectrum)

0P (pinap.t) = 2 (7.61)

The calculations for the case of a sinusoidal or constant perturbation remain valid
when the final state of the system belongs to the continuous spectrum of A



For W constant

» _ 1 2 (. E—Ei
B EW)? = 1B EWw) F (=) (7.62)

E — energy of the state |5, E)
E; — energy of the state |¢;)
),

1% Jpespy EeoE

E-E;
dﬁdEp(ﬁ,E)|<B,E|Wlw(t)>I2F(t; - )

oP ((,Di, af, l‘) =
(7.63)

F(t; E;.IEI) varies rapidly about E = E;; for sufficiently large t, this function can be

approximated, to within a constant factor, by the 6-fucntion 6 (£ — E)):
E - Ei) E—-E;
h

lim F(t;

>0

) = 21it5 (E — E) (7.64)



The function p(B, E) |{B, E|W|cp(t)>|2 varies much more slowly with £. We will assume
that ¢ is sufficiently large for the variation of this function over an energy interval of
width 4n71/t centered at E = E; to be negligible.

= We can replace F (t; E%El) by 2nhté (E — E;) which allows us to integrate over £
immediately.




If, in addition, 68 is very small, integration over g is unnecessary and we get
(a) E; € 5Ef
2m 2
0P (¢inap.t) = OBy—1|Br. Ep = EiWiep| p(BrEf = Ei)  (7.65)
(b) E; € OE ¢
5P (¢iaf.t) = 0 (7.66)

= A constant perturbation can induce transitions only between states of equal ener-
gies, and thus (b) holds.



The probability (a) increases linearly with r.
= We can define

e transition probability per unit time 6W (90,-, af)

ow (90,-, cvf) = %6@ (go,-, afr, t) (7.67)

which is time independent

e transition probability density per unit time and per unit interval of the variable B¢

oW i,
W (% “f) = 5(; ; af) (7.68)




Fermi’s Golden Rule

W(% @f) = %ﬂ [Bf. Ef = Ei|W|‘Pi>|2P(,8f, Ef= Ei) (7.69)

Assume that W is a sinusoidal perturbation which couples a state |¢;) to the contin-
uum of states |8, E¢) with energies E¢ close to E; + liw. We can carry out the same
procedure as above:

w(goi, af) = 2—7;1 |<,8f, Ef=E;+ ha)Ingoi)|2p(,8f, Ef=E;+ ha)) (7.70)



