CHAPTER 7: APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

(From Cohen-Tannoudji, Chapter XIII)

A. STATEMENT OF THE PROBLEM

Consider a system with Hamiltonian \hat{H}_{0}; its eigenvalues and eigenvectors are

$$
\begin{equation*}
\hat{H}_{0}\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle \tag{7.1}
\end{equation*}
$$

(\hat{H}_{0} is discrete and non-degenerate for simplicity.)
At $t=0$, a perturbation is applied

$$
\begin{equation*}
\hat{H}(t)=\hat{H}_{0}+W(t)=\hat{H}_{0}+\lambda \hat{W}(t) \tag{7.2}
\end{equation*}
$$

where $\lambda \ll 1$, and $\hat{W}(t)=0$ for $t<0$:

$$
\begin{array}{lll}
t<0 & t=0 & t>0 \\
\text { stationary state } & W(t) & \text { final state } \\
\left|\varphi_{i}\right\rangle & \text { evolution starts } & |\psi(t)\rangle \\
\text { eigenstate of } \hat{H}_{0} & \left(\left|\varphi_{i}\right\rangle \text { is not eigenstate of } \hat{H}\right) &
\end{array}
$$

What is the probability $\mathcal{P}_{f i}(t)$ of finding the system in another eigenstate $\left|\varphi_{f}\right\rangle$ of \hat{H}_{0} at time t ?

Treatment: solve the Schrödinger equation (S. E.)

$$
\begin{equation*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\left[\hat{H}_{0}+\lambda \hat{W}(t)\right]|\psi(t)\rangle \tag{7.3}
\end{equation*}
$$

with the initial condition $|\psi(0)\rangle=\left|\varphi_{i}\right\rangle$

$$
\begin{equation*}
\Rightarrow \quad \mathcal{P}_{f i}(t)=\left|\left\langle\varphi_{f} \mid \psi(t)\right\rangle\right|^{2} \tag{7.4}
\end{equation*}
$$

In generally this problem is not rigorously soluble!
\Rightarrow we need APPROXIMATION METHODS

B. APPROXIMATE SOLUTION OF THE SCHRÖDINGER EQUATION

1. The Schrödinger equation in the $\left\{\left|\varphi_{n}\right\rangle\right\}$ representation

We will use the $\left\{\left|\varphi_{n}\right\rangle\right\}$ representation which is convenient as $\left|\varphi_{i}\right\rangle$ and $\left|\varphi_{f}\right\rangle$ are eigenstates of \hat{H}_{0}, and obtain the differential equations for the components of the state vector

$$
\begin{align*}
|\psi(t)\rangle= & \sum_{n} c_{n}(t)\left|\varphi_{n}\right\rangle \tag{7.5}\\
c_{n}(t)= & \left\langle\varphi_{n} \mid \psi(t)\right\rangle \tag{7.6}\\
\hat{W}_{n k}(t)= & \left\langle\varphi_{n}\right| \hat{W}(t)\left|\varphi_{k}\right\rangle \tag{7.7}\\
\text { and } & \left\langle\varphi_{n}\right| \hat{H}_{0}\left|\varphi_{k}\right\rangle=E_{n} \delta_{n k} \tag{7.8}
\end{align*}
$$

We will project both sides of S.E. onto $\left|\varphi_{n}\right\rangle$ (and use $\sum_{k}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|=\hat{1}$):

$$
\begin{align*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle & =\left[\hat{H}_{0}+\lambda \hat{W}(t)\right]|\psi(t)\rangle \tag{7.9}\\
\Rightarrow i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} c_{n}(t) & =E_{n} c_{n}(t)+\sum_{k} \lambda \hat{W}_{n k}(t) c_{k}(t) \tag{7.10}
\end{align*}
$$

Changing functions

If $\lambda \hat{W}(t)=0$ then the equations decouple

$$
\begin{equation*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} c_{n}(t)=E_{n} c_{n}(t) \tag{7.11}
\end{equation*}
$$

and yield simple solution

$$
\begin{equation*}
c_{n}(t)=b_{n} e^{-i E_{n} t / \hbar} \tag{7.12}
\end{equation*}
$$

where b_{n} is a constant depending on the initial conditions.
If $\lambda \hat{W}(t) \neq 0$ and $\lambda \ll 1$, we expect the solutions $c_{n}(t)$ of the full equations to be very close to the solution above (for $\lambda \hat{W}(t)=0$), and thus if we perform the change of function

$$
\begin{equation*}
c_{n}(t)=b_{n}(t) e^{-i E_{n} t / \hbar} \tag{7.13}
\end{equation*}
$$

we can predict that $b_{n}(t)$ will be slowly varying functions of time.

Substituted into the equation gives

$$
\begin{align*}
& i \hbar e^{-i E_{n} t / \hbar \frac{\mathrm{d}}{\mathrm{~d} t} b_{n}(t)+E_{n} b_{n}(t) e^{-i E_{n} t / \hbar}} \\
= & E_{n} b_{n}(t) e^{-i E_{n} t / \hbar}+\sum_{k} \lambda \hat{W}_{n k}(t) b_{k}(t) e^{-i E_{k} t / \hbar} \tag{7.14}
\end{align*}
$$

Multiplying both sides by $e^{i E_{n} t / \hbar}$ and introducing the Bohr frequency $\omega_{n k}=\frac{E_{n}-E_{k}}{\hbar}$ gives

$$
\begin{equation*}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} b_{n}(t)=\lambda \sum_{k} e^{i \omega_{n k} t} \hat{W}_{n k}(t) b_{k}(t) \tag{7.15}
\end{equation*}
$$

2. Perturbation equations

In general, the solution is not known exactly and, for $\lambda \ll 1$, we try to determine this solution in the form of a power series in λ

$$
\begin{equation*}
b_{n}(t)=b_{n}^{(0)}(t)+\lambda b_{n}^{(1)}(t)+\lambda^{2} b_{n}^{(2)}(t)+\ldots \tag{7.16}
\end{equation*}
$$

and substitute it into the equation, and set equal the coefficients of λ^{r} on both sides of the equation

$$
\begin{align*}
\text { i) } r=0: & i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} b_{n}^{(0)}(t)=0 \tag{7.17}\\
\text { ii) } r \neq 0: & i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} b_{n}^{(r)}(t)=\sum_{k} e^{i \omega_{n k} t / \hbar} \hat{W}_{n k}(t) b_{k}^{(r-1)}(t) \tag{7.18}
\end{align*}
$$

RECURRENCE!

3. Solution to the first order in λ

a. The state of the system at time t

$$
\begin{array}{ll}
t<0: & \left|\varphi_{i}\right\rangle \text { i.e. } b_{i}(t) \neq 0, b_{k}(t)=0 \forall k \neq i \\
t=0: & \hat{H}_{0} \rightarrow \hat{H}_{0}+\lambda \hat{W} \text { and solution of S.E. is continuous at } t=0 \\
& \Rightarrow b_{n}(t=0)=\delta_{n i} \forall \lambda \\
& \Rightarrow b_{n}^{(0)}(t=0)=\delta_{n i} \\
& \Rightarrow b_{n}^{(r)}(t=0)=0 \text { if } r \geq 1 \tag{7.23}
\end{array}
$$

and with $i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} b_{n}^{(0)}(t)=0$ we get

$$
0^{\text {th }}-\text { order solution: } b_{n}^{(0)}(t)=\delta_{n i} \text { for all } t>0
$$

$$
\begin{align*}
& \begin{aligned}
1^{\mathrm{st}}-\text { order: } i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} b_{n}^{(1)}(t) & =\sum_{k} e^{i \omega_{n k} t} \hat{W}_{n k}(t) \delta_{k i} \\
& =e^{i \omega_{n i} t} \hat{W}_{n i}(t)
\end{aligned} \tag{7.24}\\
& \text { By integration } b_{n}^{(1)}(t)= \frac{1}{i \hbar} \int_{0}^{t} e^{i \omega_{n i} t^{\prime}} \hat{W}_{n i}\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{7.25}
\end{align*} c_{n}(t)=b_{n}(t) e^{-i E_{n} t / \hbar} \approx\left(b_{n}^{(0)}(t)+\lambda b_{n}^{(1)}(t)\right) e^{-i E_{n} t / \hbar} .
$$

to the first order time-dependent perturbation theory we get the state of the system at time t calculated to the first order:

$$
\begin{equation*}
|\psi(t)\rangle \approx \sum_{n} c_{n}(t)\left|\varphi_{n}\right\rangle \tag{7.28}
\end{equation*}
$$

b. The transition probability $\mathcal{P}_{i f}(t)$

$$
\begin{align*}
\left|c_{f}(t)\right|^{2} & =\left|\left\langle\varphi_{f} \mid \psi(t)\right\rangle\right|^{2}=\mathcal{P}_{i f}(t) \tag{7.29}\\
c_{f}(t) & =b_{f}(t) e^{-i E_{f} t / \hbar} \tag{7.30}\\
\Rightarrow \mathcal{P}_{i f}(t) & =\left|b_{f}(t)\right|^{2} \tag{7.31}
\end{align*}
$$

where $b_{f}(t)=b_{f}^{(0)}(t)+\lambda b_{f}^{(1)}(t)+\ldots$
Let us assume $\left|\varphi_{i}\right\rangle$ and $\left|\varphi_{f}\right\rangle$ are different (i.e. we are concerned only with transition induced by $\lambda \hat{W}$ between two distinct stationary states of \hat{H}_{0}):
$b_{f}^{(0)}(t)=0$ and consequently

$$
\begin{equation*}
\mathcal{P}_{i f}(t)=\lambda^{2}\left|b_{f}^{(1)}(t)\right|^{2} \tag{7.32}
\end{equation*}
$$

and using the formula for $b_{n}^{(1)}(t)$ we get

$$
\begin{equation*}
\mathcal{P}_{i f}(t)=\frac{1}{\hbar^{2}}|\int_{0}^{t} e^{i \omega_{f i} t^{\prime}} \underbrace{W_{f i}\left(t^{\prime}\right)}_{W(t)=\lambda \hat{W}} \mathrm{~d} t^{\prime}|^{2} \tag{7.33}
\end{equation*}
$$

Consider the function $\tilde{W}_{f i}\left(t^{\prime}\right)$ which is zero for $t^{\prime}<0$ and $T^{\prime}>t$ and is equal to $W_{f i}\left(t^{\prime}\right)$ for $0 \leq t^{\prime} \leq t$.
$\tilde{W}_{f i}\left(t^{\prime}\right)$ is the matrix element of the perturbation "seen" by the system between the time $t=0$ and the measurement time t, when we try to determine if the system is in the state $\left|\varphi_{f}\right\rangle$.
$\mathcal{P}_{i f}(t)$ is proportional to the square of the modulus of the Fourier transform of the perturbation actually "seen" by the system, $\tilde{W}_{f i}(t)$.

C. SPECIAL CASE: A SINUSOIDAL OR CONSTANT PERTURBATION

$\hat{W}(t)=\hat{W} \sin \omega t$ or
$\hat{W}(t)=\hat{W} \cos \omega t$
\hat{W} is a time independent observable and ω a constant angular frequency.
(Example: electromagnetic wave of angular frequency ω.
$\overline{\mathcal{P}_{i f}(t)}$ is the probability, induced by monochromatic radiation, of a transition between the initial state $\left|\varphi_{i}\right\rangle$ and the final state $\left|\varphi_{f}\right\rangle$.)

$$
\begin{equation*}
\hat{W}_{f i}(t)=\hat{W}_{f i} \sin \omega t=\frac{\hat{W}_{f i}}{2 i}\left(e^{i \omega t}-e^{-i \omega t}\right) \tag{7.34}
\end{equation*}
$$

$\hat{W}_{f i}$ is a time independent complex number and

$$
\begin{equation*}
b_{n}^{(1)}(t)=-\frac{\hat{W}_{n i}}{2 \hbar} \int_{0}^{t}\left[e^{i\left(\omega_{n i}+\omega\right) t^{\prime}}-e^{i\left(\omega_{n i}-\omega\right) t^{\prime}}\right] \mathrm{d} t^{\prime} \tag{7.35}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\hat{W}_{n i}}{2 i \hbar}\left[\frac{1-e^{i\left(\omega_{n i}+\omega\right) t}}{\omega_{n i}+\omega}-\frac{1-e^{i\left(\omega_{n i}-\omega\right) t}}{\omega_{n i}-\omega}\right] \tag{7.36}
\end{equation*}
$$

The transition probability becomes

$$
\begin{equation*}
\mathcal{P}_{i f}(t ; \omega)=\lambda^{2}\left|b_{f}^{(1)}(t)\right|^{2}=\frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}}\left|\frac{1-e^{i\left(\omega_{f i}+\omega\right) t}}{\omega_{f i}+\omega}-\frac{1-e^{i\left(\omega_{f i}-\omega\right) t}}{\omega_{f i}-\omega}\right|^{2} \tag{7.37}
\end{equation*}
$$

($\mathcal{P}_{\text {if }}$ depends on the frequency of the perturbation)

If $\hat{W}_{f i}(t)=\hat{W}_{f i} \cos \omega t$,

$$
\begin{equation*}
\mathcal{P}_{i f}(t ; \omega)=\frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}}\left|\frac{1-e^{i\left(\omega_{f i}+\omega\right) t}}{\omega_{f i}+\omega}+\frac{1-e^{i\left(\omega_{f i}-\omega\right) t}}{\omega_{f i}-\omega}\right|^{2} \tag{7.38}
\end{equation*}
$$

Constant perturbation $\omega=0$

$$
\begin{align*}
& \mathcal{P}_{i f}(t ; \omega)=\frac{\left|W_{f i}\right|^{2}}{\hbar^{2} \omega_{f i}^{2}}\left|1-e^{i \omega_{f i} t}\right|^{2}=\frac{\left|W_{f i}\right|^{2}}{\hbar^{2}} F\left(t ; \omega_{f i}\right) \tag{7.39}\\
& F\left(t ; \omega_{f i}\right)=\left[\frac{\sin \left(\omega_{f i} t / 2\right)}{\omega_{f i} / 2}\right]^{2} \tag{7.40}
\end{align*}
$$

2. Sinusoidal perturbation which couples discrete states: resonance
a. Resonant nature of the transition probability

When t is fixed, $\mathcal{P}_{i f}(t ; \omega)$ is a function of one variable ω. This function has a maximum for $\omega \simeq \omega_{f i}$ or $\omega \simeq-\omega_{f i}$; this is a resonance phenomenon (choose $\omega \geq 0$)

Resonant absorption

Stimulated emission

$$
\begin{gather*}
\mathcal{P}_{i f}(t ; \omega)=\frac{\left|\hat{W}_{f i}\right|^{2}}{4 \hbar^{2}}|\underbrace{\frac{1-e^{i\left(\omega_{f i}+\omega\right) t}}{\omega_{f i}+\omega}}_{A_{+}}-\underbrace{\frac{1-e^{i\left(\omega_{f i}-\omega\right) t}}{\omega_{f i}-\omega}}_{A-}|^{2} \tag{7.41}\\
A_{+}=-i e^{i\left(\omega_{f i}+\omega\right) t / 2} \frac{\sin \left[\left(\omega_{f i}+\omega\right) t / 2\right]}{\underbrace{\left(\omega_{f i}+\omega\right) / 2}_{\text {goes to zero for } \omega=-\omega_{f i}}} \tag{7.42}
\end{gather*}
$$

This term is anti-resonant for $\omega=\omega_{f i}$ (and resonant for $\omega=-\omega_{f i}$)

Resonant term

$$
\begin{equation*}
A_{-}=-i e^{i\left(\omega_{f i}-\omega\right) t / 2} \frac{\sin \left[\left(\omega_{f i}-\omega\right) t / 2\right]}{\left(\omega_{f i}-\omega\right) / 2} \tag{7.43}
\end{equation*}
$$

Consider the case $\left|\omega-\omega_{f i}\right| \ll \omega_{f i}$ (this is the resonant approximation): $1^{\text {st }}$ order transition probability:

$$
\begin{align*}
\mathcal{P}_{i f}(t ; \omega) & =\frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}} F\left(t ; \omega-\omega_{f i}\right) \tag{7.44}\\
\underbrace{F\left(t ; \omega-\omega_{f i}\right)}_{\text {sinc function }} & =\left\{\frac{\sin \left[\left(\omega_{f i}-\omega\right) t / 2\right]}{\left(\omega_{f i}-\omega\right) / 2}\right\}^{2} \tag{7.45}
\end{align*}
$$

b. The resonance width and time-energy uncertainty relation

The most of the resonant peak is concentrated around the resonant frequency $\omega_{f i}$, for example at $\frac{\left(\omega-\omega_{f i}\right) t}{2}=\frac{3 \pi}{2}$ we get the transition probability $\frac{\left|W_{f i}\right|^{2} t^{2}}{9 \pi^{2} \hbar^{2}}$ which is approximately 5% of the transition probability at the resonance.

We can define the width of the resonant peak as the difference between the frequencies of the minima of $\mathcal{P}_{\text {if }}$ around the resonant frequency, see the figure, then

$$
\begin{equation*}
\Delta \omega \simeq \frac{4 \pi}{t} \tag{7.46}
\end{equation*}
$$

which is analogous to the time-energy uncertainty relation $\Delta E=\hbar \Delta \omega \simeq \frac{\hbar}{t}$
c. Validity of the perturbation treatment
a) Discussion of the resonant approximation
A_{+}has been neglected relative to A_{-}:
$\left|A_{-}(\omega)\right|^{2}$ sinc function

$$
\begin{equation*}
\left|A_{+}(\omega)\right|^{2}=\left|A_{-}(-\omega)\right|^{2} \ll\left|A_{-}\left(\omega_{f i}\right)\right|^{2} \tag{7.47}
\end{equation*}
$$

The resonant approximation is justified on the condition

$$
\begin{equation*}
2\left|\omega_{f i}\right| \gg \Delta \omega \tag{7.48}
\end{equation*}
$$

that is

$$
\begin{equation*}
\underbrace{t}_{\text {duration of the perturbation }} \gg \frac{1}{\left|\omega_{f i}\right|} \simeq \underbrace{\frac{1}{\omega}}_{\text {oscillation period }} \tag{7.49}
\end{equation*}
$$

b) Limits of the first-order calculations

If t becomes too large, the first-order approximation can cease to be valid (i.e. giving infinit transition probability which is physically a nonsense):

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathcal{P}_{i f}\left(t ; \omega=\omega_{f i}\right)=\lim _{t \rightarrow \infty} \frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}} t^{2}=\infty \tag{7.50}
\end{equation*}
$$

For the first-order approximation to be valid at resonance, $\mathcal{P}_{i f}\left(t ; \omega=\omega_{f i}\right) \ll 1$:

$$
\begin{equation*}
t \ll \frac{\hbar}{\left|W_{f i}\right|} \tag{7.51}
\end{equation*}
$$

3. Coupling with the states of the continuum

E_{f} belongs to a continuous part of the spectrum of \hat{H}_{0}
\Downarrow
We cannot measure the probability of finding the system in a well-defined state $\left|\varphi_{f}\right\rangle$
at time t
\Downarrow
We have to integrate over probability density $\left|\left\langle\varphi_{f} \mid \psi(t)\right\rangle\right|^{2}$ over a certain group of final states.
a. Integration over a continuum of final states; density of states
a) Example

- spinless particle of mass m
- scattering by a potential $W(\vec{r})$
$E=\vec{p}^{2} / 2 m,|\psi(t)\rangle$ can be expanded in terms of $|\vec{p}\rangle$
The corresponding wavefunctions are plane waves

$$
\begin{equation*}
\langle\vec{r} \mid \vec{p}\rangle=\left(\frac{1}{2 \pi \hbar}\right)^{3 / 2} e^{i \vec{p} \cdot \vec{r} / \hbar} \tag{7.52}
\end{equation*}
$$

The probability density

$$
\begin{equation*}
|\langle\vec{p} \mid \psi(t)\rangle|^{2} \tag{7.53}
\end{equation*}
$$

Detector gives a signal when the particle is scattered with the momentum \vec{p}_{f} but since it has a finite aperture it really gives the signal when the particle has momentum in a domain D_{f} of \vec{p}-space around $\vec{p}_{f}\left(\delta \Omega_{f}, \delta E_{f}\right)$

$$
\begin{gather*}
\delta \mathcal{P}\left(\vec{p}_{f}, t\right)=\int_{\vec{p}_{f} \in D_{f}} \mathrm{~d}^{3} \vec{p}|\langle\vec{p} \mid \psi(t)\rangle|^{2} \tag{7.54}\\
\mathrm{~d}^{3} \vec{p}=p^{2} \mathrm{~d} p \underbrace{\mathrm{~d} \Omega}_{\text {solid angle around } \vec{p}_{f}}=\underbrace{\rho(E)}_{\text {density of final states }} \mathrm{d} E \mathrm{~d} \Omega \\
\rho(E)=p^{2} \frac{\mathrm{~d} p}{\mathrm{~d} E}=p^{2} \frac{m}{p}=m \sqrt{2 m E} \tag{7.55}\\
\delta \mathcal{P}\left(\vec{p}_{f}, t\right)=\int_{\Omega \in \delta \Omega_{f}, E \in \delta E_{f}} \mathrm{~d} \Omega \mathrm{~d} E \rho(E)|\langle\vec{p} \mid \psi(t)\rangle|^{2} \tag{7.56}
\end{gather*}
$$

b) The general case

Eigenstates of \hat{H}_{0}, labeled by a continuous set of indices

$$
\begin{equation*}
\left\langle\alpha \mid \alpha^{\prime}\right\rangle=\delta\left(\alpha-\alpha^{\prime}\right) \tag{7.57}
\end{equation*}
$$

at time $t:|\psi(t)\rangle$

$$
\begin{equation*}
\delta \mathcal{P}\left(\alpha_{f}, t\right)=\int_{\alpha \in D_{f}} \mathrm{~d} \alpha|\langle\alpha \mid \psi(t)\rangle|^{2} \tag{7.58}
\end{equation*}
$$

Change variables and introduce density of final states

$$
\begin{gather*}
\mathrm{d} \alpha=\rho(\beta, E) \mathrm{d} \beta \mathrm{~d} E \tag{7.59}\\
\delta \mathcal{P}\left(\alpha_{f}, t\right)=\int_{\beta \in \delta \beta_{f}, E \in \delta E_{f}} \mathrm{~d} \beta \mathrm{~d} E \rho(\beta, E)|\langle\beta, E \mid \psi(t)\rangle|^{2} \tag{7.60}
\end{gather*}
$$

Fermi's Golden Rule

Let $|\psi(t)\rangle$ be the normalized state vector of the system at time t.

Consider a system which is initially in an eigenstate $\left|\varphi_{i}\right\rangle$ of \hat{H}_{0} (in discrete part of spectrum)

$$
\begin{equation*}
\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right)=? \tag{7.61}
\end{equation*}
$$

The calculations for the case of a sinusoidal or constant perturbation remain valid when the final state of the system belongs to the continuous spectrum of \hat{H}_{0}

For W constant

$$
\begin{equation*}
\left.|\langle\beta, E \mid \psi(t)\rangle|^{2}=\frac{1}{\hbar^{2}}|\langle\beta, E| W| \psi(t)\right\rangle\left.\right|^{2} F\left(t ; \frac{E-E_{i}}{\hbar}\right) \tag{7.62}
\end{equation*}
$$

E - energy of the state $|\beta, E\rangle$
E_{i} - energy of the state $\left|\varphi_{i}\right\rangle$

$$
\begin{equation*}
\left.\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right)=\frac{1}{\hbar^{2}} \int_{\beta \in \delta \beta_{f}, E \in \delta E_{f}} \mathrm{~d} \beta \mathrm{~d} E \rho(\beta, E)|\langle\beta, E| W| \psi(t)\right\rangle\left.\right|^{2} F\left(t ; \frac{E-E_{i}}{\hbar}\right) \tag{7.63}
\end{equation*}
$$

$F\left(t ; \frac{E-E_{i}}{\hbar}\right)$ varies rapidly about $E=E_{i}$; for sufficiently large t, this function can be approximated, to within a constant factor, by the δ-fucntion $\delta\left(E-E_{i}\right)$:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} F\left(t ; \frac{E-E_{i}}{\hbar}\right)=\pi t \delta\left(\frac{E-E_{i}}{2 \hbar}\right)=2 \pi \hbar t \delta\left(E-E_{i}\right) \tag{7.64}
\end{equation*}
$$

The function $\rho(\beta, E)|\langle\beta, E| W| \psi(t)\rangle\left.\right|^{2}$ varies much more slowly with E. We will assume that t is sufficiently large for the variation of this function over an energy interval of width $4 \pi \hbar / t$ centered at $E=E_{i}$ to be negligible.
\Rightarrow We can replace $F\left(t ; \frac{E-E_{i}}{\hbar}\right)$ by $2 \pi \hbar t \delta\left(E-E_{i}\right)$ which allows us to integrate over E immediately.

If, in addition, $\delta \beta_{f}$ is very small, integration over β is unnecessary and we get (a) $E_{i} \in \delta E_{f}$

$$
\begin{equation*}
\left.\delta \mathscr{P}\left(\varphi_{i}, \alpha_{f}, t\right)=\delta \beta_{f} \frac{2 \pi}{\hbar} t\left|\left\langle\beta_{f}, E_{f}=E_{i}\right| W\right| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}\right) \tag{7.65}
\end{equation*}
$$

(b) $E_{i} \notin \delta E_{f}$

$$
\begin{equation*}
\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right)=0 \tag{7.66}
\end{equation*}
$$

\Rightarrow A constant perturbation can induce transitions only between states of equal energies, and thus (b) holds.

The probability (a) increases linearly with t.
\Rightarrow We can define

- transition probability per unit time $\delta \mathcal{W}\left(\varphi_{i}, \alpha_{f}\right)$

$$
\begin{equation*}
\delta \mathcal{W}\left(\varphi_{i}, \alpha_{f}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \delta \mathscr{P}\left(\varphi_{i}, \alpha_{f}, t\right) \tag{7.67}
\end{equation*}
$$

which is time independent

- transition probability density per unit time and per unit interval of the variable β_{f}

$$
\begin{equation*}
w\left(\varphi_{i}, \alpha_{f}\right)=\frac{\delta \mathcal{W}\left(\varphi_{i}, \alpha_{f}\right)}{\delta \beta_{f}} \tag{7.68}
\end{equation*}
$$

Fermi's Golden Rule

$$
\begin{equation*}
\left.w\left(\varphi_{i}, \alpha_{f}\right)=\frac{2 \pi}{\hbar}\left|\left\langle\beta_{f}, E_{f}=E_{i}\right| W\right| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}\right) \tag{7.69}
\end{equation*}
$$

Assume that W is a sinusoidal perturbation which couples a state $\left|\varphi_{i}\right\rangle$ to the continuum of states $\left\langle\beta_{f}, E_{f}\right\rangle$ with energies E_{f} close to $E_{i}+\hbar \omega$. We can carry out the same procedure as above:

$$
\begin{equation*}
\left.w\left(\varphi_{i}, \alpha_{f}\right)=\frac{\pi}{2 \hbar}\left|\left\langle\beta_{f}, E_{f}=E_{i}+\hbar \omega\right| W\right| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}+\hbar \omega\right) \tag{7.70}
\end{equation*}
$$

