CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

(From Cohen-Tannoudji, Chapter XII)

We will now incorporate a weak relativistic effects as perturbation of the non-relativistic Hamiltonian

$$\hat{H} = \hat{H}_0 + W$$

$$= m_e c^2 + \underbrace{\frac{\hat{\vec{P}}^2}{2m_e} + V(R)}_{\hat{H}_0} - \underbrace{\frac{\hat{\vec{P}}^4}{8m_e^3 c^2}}_{\hat{W}_{mv}} + \underbrace{\frac{1}{2m_e^2 c^2} \frac{1}{R} \frac{dV(R)}{dR} \hat{\vec{L}} \cdot \hat{\vec{S}}}_{\hat{W}_{SO}} + \underbrace{\frac{\hbar^2}{8m_e^2 c^2} \Delta V(R)}_{\hat{W}_D} + \dots (6.1)$$

 \hat{W}_{mv} - variation of mass with velocity

 \hat{W}_{SO} - spin-orbit coupling

 \hat{W}_D - Darwin term

The energies relevant to the relativistic effects are weak compared to the energy associated with \hat{H}_0

$$\frac{\hat{W}_{mv}}{\hat{H}_0} \simeq \frac{\hat{W}_{SO}}{\hat{H}_0} \simeq \frac{\hat{W}_D}{\hat{H}_0} \simeq \frac{\hat{W}_{mv}}{\hat{H}_0} \simeq \alpha^2 \simeq \left(\frac{1}{137}\right)^2 \tag{6.2}$$

In addition we will consider hyperfine structure which comes from the interaction of the electron and nuclear magnetic momenta

$$\hat{W}_{hf} = -\frac{\mu_0}{4\pi} \left\{ \frac{q}{m_e R^3} \hat{\vec{L}} \cdot \hat{\vec{M}}_I + \frac{1}{R^3} \left[3 \left(\hat{\vec{M}}_S \cdot \hat{n} \right) \left(\hat{\vec{M}}_I \cdot \hat{n} \right) - \hat{\vec{M}}_S \cdot \hat{\vec{M}}_I \right]$$
(6.3)

$$+\frac{8\pi}{3}\hat{\vec{M}}_S\cdot\hat{\vec{M}}_I\delta(\vec{R})\right\}\simeq\frac{\hat{W}_{SO}}{2000}\tag{6.4}$$

$$\hat{\vec{M}}_I = \frac{g_P \mu_n \hat{\vec{I}}}{\hbar}, \quad \mu_n = \frac{q_P \hbar}{2M_P} \tag{6.5}$$

Fine structure of the n = 2 level

2s (n = 2, l = 0) and 2p (n = 2, l = 1)

$$E = -\frac{E_I}{4} = -\frac{1}{8}\mu c^2 \alpha^2 \tag{6.6}$$

Orbital angular momentum \hat{L}_z : l=0, m=0 and l=1, m=+1,0,-1Electron spin \hat{S}_z : $m = \pm 1/2$ Nuclear spin \hat{I}_z : $m = \pm 1/2$

The perturbation Hamiltonian

$$\hat{W}_{f} = \hat{W}_{mv} + \hat{W}_{SO} + \hat{W}_{D}
\hat{W} = \hat{W}_{f} + \hat{W}_{hf}$$
(6.7)

$$\hat{W} = \hat{W}_f + \hat{W}_{hf} \tag{6.8}$$

Matrix representation of \hat{W}_f

 16×16 matrix

- $-\hat{W}_f$ does not act on the spin variables of the proton
- $-\,\hat{W}_f$ does not connect the 2s and 2p subshells $-\,\hat{L}^2$ commutes with \hat{W}_f

1. 2s subshell

 $m_S=\pm 1/2\Rightarrow$ 2 dimensional \hat{W}_{mv} and \hat{W}_D do not depend on $\hat{\vec{S}}$

⇒ they are proportional to a unit matrix and are given as

$$\langle \hat{W}_{mv} \rangle_{2s} = \langle n = 2; l = 0, m_L = 0 | -\frac{\hat{\vec{P}}^4}{8m_e^3 c^2} | n = 2; l = 0, m_L = 0 \rangle$$

$$= -\frac{13}{128} m_e c^2 \alpha^4$$

$$\langle \hat{W}_D \rangle_{2s} = \langle n = 2; l = 0, m_L = 0 | \frac{\hbar^2}{8m_e^2 c^2} \Delta V(R) | n = 2; l = 0, m_L = 0 \rangle$$

$$= \frac{1}{16} m_e c^2 \alpha^4$$
(6.10)

and since l = 0

$$\left\langle \hat{W}_{SO} \right\rangle = 0 \tag{6.11}$$

Thus the fine structure terms lead to shifting the 2s subshell as a whole by an amount

$$\langle \hat{W}_{mv} \rangle + \langle \hat{W}_D \rangle + \langle \hat{W}_{SO} \rangle = -\frac{5m_e c^2 \alpha^4}{128}$$
 (6.12)

2. 2p subshell

(a) \hat{W}_{mv} and \hat{W}_D terms – commute with $\hat{\vec{L}}$ and do not act on spin $\hat{\vec{S}}$ variables $\downarrow \downarrow$ a multiple of a unit matrix

$$\left\langle \hat{W}_{mv} \right\rangle_{2p} = -\frac{7}{384} m_e c^2 \alpha^4 \qquad (6.13)$$

$$\left\langle \hat{W}_D \right\rangle_{2p} = 0 \qquad (6.14)$$

$$\left\langle \hat{W}_D \right\rangle_{2n} = 0 \tag{6.14}$$

(See Complement BXII)

(b) \hat{W}_{SO}

various elements:

$$\langle n = 2; l = 1; s = \frac{1}{2}; m'_{L}; m'_{S} | \xi(R) \hat{\vec{L}} \cdot \hat{\vec{S}} | n = 2; l = 1; s = \frac{1}{2}; m_{L}; m_{S} \rangle$$

$$\xi(R) = \frac{e^{2}}{2m_{e}^{2}c^{2}} \frac{1}{R^{3}}$$
(6.15)

In $\{|\vec{r}\rangle\}$ representation, we can separate the radial part of the matrix elements from the angular and spin parts:

$$\xi_{2p}\langle l=1; s=\frac{1}{2}; m'_L; m'_S | \hat{\vec{L}} \cdot \hat{\vec{S}} | l=1; s=\frac{1}{2}; m_L; m_S \rangle$$
 (6.16)

$$\xi_{2p} = \frac{e^2}{2m_e^2 c^2} \int_0^\infty \frac{1}{r^3} |R_{21}(r)|^2 r^2 dr = \frac{1}{48\hbar^2} m_e c^2 \alpha^4$$
 (6.17)

Problem: the diagonalization of the $\xi_{2p}\hat{\vec{L}}\cdot\hat{\vec{S}}$ operator

Problem: the diagonalization of the $\xi_{2p}\hat{\vec{L}}\cdot\hat{\vec{S}}$ operator

Basis {
$$|l=1; s=1/2; m_L; m_S\rangle$$
} – common eigenstates of \hat{L}^2 , \hat{S}^2 , \hat{L}_z , \hat{S}_z

Introducing the total angular momentum

$$\hat{\vec{J}} = \hat{\vec{L}} + \hat{\vec{S}} \tag{6.18}$$

$$\left\{ |l=1; s=\frac{1}{2}; J, m_J \rangle \right\}$$
 (6.19)

Addition of angular momentum: J = 1 + 1/2 = 3/2 and J = 1 - 1/2 = 1/2

$$\hat{J}^2 = (\hat{\vec{L}} + \hat{\vec{S}})^2 = \hat{L}^2 + \hat{S}^2 + 2\hat{\vec{L}} \cdot \hat{\vec{S}}$$
 (6.20)

then

$$\xi_{2p}\hat{\vec{L}}\cdot\hat{\vec{S}} = \frac{1}{2}\xi_{2p}\left(\hat{J}^2 - \hat{L}^2 - \hat{S}^2\right)$$
 (6.21)

$$\xi_{2p}\hat{\vec{L}}\cdot\hat{\vec{S}}|l=1; s=\frac{1}{2}; J, m_{J}\rangle$$

$$= \frac{1}{2}\xi_{2p}\hbar^{2}\left[J(J+1)-2-\frac{3}{4}\right]|l=1; s=\frac{1}{2}; J, m_{J}\rangle$$
(6.22)

The eigenvalues of $\xi_{2p}\hat{\vec{L}}\cdot\hat{\vec{S}}$ depend only on J and not on m_J , and are equal to

$$J = \frac{1}{2}: \qquad \frac{1}{2}\xi_{2p} \left[\frac{3}{4} - 2 - \frac{3}{4} \right] \hbar^2 = -\xi_{2p} \hbar^2 = -\frac{1}{48} m_e c^2 \alpha^4 \tag{6.23}$$

$$J = \frac{3}{2}: \qquad \frac{1}{2}\xi_{2p} \left[\frac{15}{4} - 2 - \frac{3}{4} \right] \hbar^2 = +\frac{1}{2}\xi_{2p} \hbar^2 = \frac{1}{96} m_e c^2 \alpha^4$$
 (6.24)

The six-fold degeneracy of the 2p level is therefore partially removed by \hat{W}_{SO}

The fine structure of the n = 2 level: energies

 $2s_{1/2}$

$$-\frac{5}{128}m_ec^2\alpha^4\tag{6.25}$$

 $2p_{1/2}$

$$\left(-\frac{7}{384} - \frac{1}{48}\right)m_e c^2 \alpha^4 = -\frac{5}{128}m_e c^2 \alpha^4 \tag{6.26}$$

 $2p_{3/2}$

$$\left(-\frac{7}{384} + \frac{1}{96}\right)m_ec^2\alpha^4 = -\frac{1}{128}m_ec^2\alpha^4 \tag{6.27}$$

The fine structure of the n = 2 level

The hyperfine structure of the n = 1 level

- a) The degeneracy of the 1s level
- no orbital degeneracy (l = 0)
- $-\hat{S}_z$, \hat{I}_z : each 2 value $\pm 1/2$

$$\left\{ |n=1; l=0; m_L=0; m_S=\pm \frac{1}{2}; m_I=\pm \frac{1}{2} \right\}$$
 (6.28)

b) The 1s level has no fine structure \hat{W}_f does not remove the degeneracy of the 1s state

$$\left\langle \hat{W}_{mv} \right\rangle_{1s} = -\frac{5}{8} m_e c^2 \alpha^4 \tag{6.29}$$

$$\left\langle \hat{W}_D \right\rangle_{1s} = \frac{1}{2} m_e c^2 \alpha^4 \tag{6.30}$$

$$\left\langle \hat{W}_{SO} \right\rangle_{1s} = 0 \tag{6.31}$$

 \hat{W}_f shifts the levels by $-\frac{1}{8}m_ec^2\alpha^4$ Since l=0 and $s=1/2,\,J=1/2\Rightarrow$ only one fine structure level, $1s_{1/2}$

Matrix representation of \hat{W}_{hf} in the 1s level

$$\hat{W}_{hf} = -\frac{\mu_0}{4\pi} \left\{ \underbrace{\frac{q}{m_e R^3} \hat{\vec{L}} \cdot \hat{\vec{M}}_I}_{=0 \text{ as } l=0} + \frac{1}{R^3} \underbrace{\left[3\left(\hat{\vec{M}}_S \cdot \hat{n}\right)\left(\hat{\vec{M}}_I \cdot \hat{n}\right) - \hat{\vec{M}}_S \cdot \hat{\vec{M}}_I\right]}_{=0 \text{ due to spherical symmetry of } 1s \text{ state}} \right\}$$
(6.32)

$$+\underbrace{\frac{8\pi \,\hat{M}_S \cdot \hat{M}_I \delta\left(\vec{R}\right)}{\frac{3}{40}}}_{=0} = 0 \text{ due to spherical symmetry of } 1s \text{ state}$$

$$+\underbrace{\frac{8\pi \,\hat{M}_S \cdot \hat{M}_I \delta\left(\vec{R}\right)}{\frac{3}{40}}}_{=0}$$
(6.33)

$$\hat{\vec{M}}_I = \frac{g_P \mu_n \hat{\vec{I}}}{\hbar}, \qquad \mu_n = \frac{q_P \hbar}{2M_P} \tag{6.34}$$

The matrix elements are

$$\langle n=1; l=0; m_L=0; m_S'; m_I'| - \frac{2\mu_0}{3} \hat{\vec{M}}_S \cdot \hat{\vec{M}}_I \delta(\vec{R}) | n=1; l=0; m_L=0; m_S; m_I \rangle$$

In coordinate representation, we separate the orbital and spin parts of the matrix elements

$$\mathcal{A}\langle m_S', m_I' | \hat{\vec{I}} \cdot \hat{\vec{S}} | m_S, m_I \rangle \tag{6.35}$$

where

$$\mathcal{A} = \frac{q^2}{3\epsilon_0 c^2} \frac{g_P}{m_e M_P} \langle n = 1; l = 0; m_L = 0 | \delta(\vec{R}) | n = 1; l = 0; m_L = 0 \rangle$$
 (6.36)

$$= \frac{q^2}{3\epsilon_0 c^2} \frac{g_P}{m_e M_P} \frac{1}{4\pi} \left| R_{10}(0) \right|^2 = \frac{4}{3} g_P \frac{m_e}{M_P} m_e c^2 \alpha^4 \left(1 + \frac{m_e}{M_P} \right)^{-3} \frac{1}{\hbar^2}$$
 (6.37)

The orbital variables have thus disappeared, and we are left with the problem of two spin 1/2's, coupled by an interaction

$$\mathcal{A}\hat{\vec{I}}\cdot\hat{\vec{S}} \tag{6.38}$$

where \mathcal{A} is a constant.

Eigenstates and eigenvalues

Initial basis { $|s = 1/2; I = 1/2; m_s; m_I \rangle$ }

– common eigenvectors of \hat{S}^2 , \hat{I}^2 , \hat{S}_z , \hat{I}_z

New basis

- introducing total angular momentum $\hat{\vec{F}} = \hat{\vec{S}} + \hat{\vec{I}}$: $\{|s = 1/2; I = 1/2; F; m_F\rangle\}$
- common eigenvectors of \hat{S}^2 , \hat{I}^2 , \hat{F}^2 , \hat{F}_z

 $\hat{\vec{F}}$: F = 0, $m_F = 0$ and F = 1, $m_F = 1, 0, -1$

$$\mathcal{A}\hat{\vec{I}}\cdot\hat{\vec{S}} = \frac{\mathcal{A}}{2}(\hat{F}^2 - \hat{I}^2 - \hat{S}^2)$$
 (6.39)

The basis states $|F, m_F\rangle$ are eigenstates of $\hat{\mathcal{A}I} \cdot \hat{\vec{S}}$:

$$\mathcal{A}\hat{\vec{I}}\cdot\hat{\vec{S}}|F,m_F\rangle = \frac{\mathcal{A}\hbar^2}{2}\left[F(F+1) - I(I+1) - S(S+1)\right]|F,m_F\rangle \tag{6.40}$$

$$\Rightarrow F = 1: \qquad \frac{\mathcal{H}\hbar^2}{2} \left[2 - \frac{3}{4} - \frac{3}{4} \right] = \frac{\mathcal{H}\hbar^2}{4}$$
 (3-fold degenerate) (6.41)

$$F = 0:$$
 $\frac{\mathcal{A}\hbar^2}{2} \left[0 - \frac{3}{4} - \frac{3}{4} \right] = -\frac{3\mathcal{A}\hbar^2}{4}$ (nondegenerate) (6.42)

The four-fold degeneracy of the 1s level is partially removed by \hat{W}_{hf} .

The hyperfine structure of the 1s level

The n = 2 level

