CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY
THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

(From Cohen-Tannoudji, Chapter XIlI)



We will now incorporate a weak relativistic effects as perturbation of the non-relativistic
Hamiltonian
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W, - variation of mass with velocity
Ws o - spin-orbit coupling
Wp - Darwin term



The energies relevant to the relativistic effects are weak compared to the energy
associated with H
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In addition we will consider hyperfine structure which comes from the interaction of
the electron and nuclear magnetic momenta
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Fine structure of the n = 2 level

2s(n=2,1=0)and2p (n=2,1=1)

E =

Orbital angular momentum L,: I=0,m=0and =1, m = +1,0, -1

Electron spin S,: m = +1/2
Nuclear spin I,: m = +1/2

The perturbation Hamiltonian
Wf =
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Matrix representation of W/

16 x 16 matrix
— W does not act on ths spin variables of the proton

— sz does not connect the 2s and 2p subshells
— L commutes with W
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1. 2s subshell
mg = £1/2 = 2 dimensional X
W,y and Wy, do not depend on §
= they are proportional to a unit matrix and are given as
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(Wmv>2S = (n=2;1=0,my =0| - 8m2c2|n =2:1=0,my = 0)

_ 13 54

= 128m€c a (6.9)

. 72
<WD>2S = (n=2;1=0,my = O|8mgczAV(R)|n =2:1=0,my = 0)
1
= —mecza4 (6.10)

16



and sincel =0

(Wso) = 0 (6.11)

Thus the fine structure terms lead to shifting the 2s subshell as a whole by an
amount
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2. 2p subshell

(a) Wy and Wp terms
— commute with L and do not act on spin § variables
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a multiple of a unit matrix

<Wmv>2p = —ﬁmecchl (6.13)
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(See Complement BXII)



(b) Wso
various elements:

1 5 5 1
(n=21=1is = ZimpmgERL - Sln = 21 = 115 = Zumpimg)
2
e 1
R) = 6.15
R =5 TR (6.15)

In {|#)} representation, we can separate the radial part of the matrix elements
from the angular and spin parts:
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Problem: the diagonalization of the gzpi Y operator



Problem: the diagonalization of the fzpﬁ- S operator

Basis {|l =1;s =1/2;my;mg)}
— common eigenstates of £.2, §2, .., S,

Introducing the total angular momentum
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Addition of angular momentum: J =1+1/2=3/2andJ=1-1/2=1/2
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The eigenvalues of &,L - § depend only on J and not on my, and are equal
to
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The six-fold degeneracy of the 2p level is therefore partially removed by Wy



The fine structure of the n = 2 level: energies
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The fine structure of the n = 2 level
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The hyperfine structure of the n = 1 level

a) The degeneracy of the 1s level
— no orbital degeneracy (I = 0)
— S, I: each 2 value +£1/2
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b) The 1s level has no fine structure
Wf does not remove the degeneracy of the 1s state
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Wf shifts the levels by ——mec a
Since /=0and s = 1/2, J = 1/2 = only one fine structure level, 1s; />



Matrix representation of W, ¢ in the 1s level
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The matrix elements are
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In coordinate representation, we separate the orbital and spin parts of the matrix
elements
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The orbital variables have thus disappeared, and we are left with the problem of two
spin 1/2's, coupled by an interaction
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where A is a constant.

Eigenstates and eigenvalues

Initial basis {|s = 1/2;1 = 1/2; mg; my)}
— common eigenvectors of $2, /2, S, I.

New basis L
— introducing total angular momentum F=S+Il{s=1/2;1=1/2; F;mp)}
— common eigenvectors of $2, [2, F2, F,



F:F=0,mp=0and F=1,mp=1,0,-1
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The basis states |F, mp) are eigenstates of Al - S
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The four-fold degeneracy of the 1s level is partially removed by th.
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The hyperfine structure of the 1s level




The n = 2 level
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