
CHAPTER 5: STATIONARY PERTURBATION THEORY

(From Cohen-Tannoudji, Chapter XI)



A. DESCRIPTION OF THE METHOD

Approximation methods to obtain analytical solution of eigenvalue problems.

1. Statement of the problem

We consider a time-independent perturbation

Ĥ = Ĥ0 + W (5.1)

of the time-independent Hamiltonian Ĥ0, whose eigenvalues and eigenvectors are
known and which captures the essential physics, by an additional term

W = λŴ (5.2)

λ � 1 (5.3)



We assume that the eigenvalues and eigenstates of Ĥ0 are known and that the un-
perturbed energies form a discrete spectrum E0

p with eigenvectors |ϕi
p〉 (where the

index i refers to degeneracy):

Ĥ0|ϕ
i
p〉 = E0

p|ϕ
i
p〉 (5.4)

where

〈ϕi
p|ϕ

i′
p′〉 = δpp′δii′ (5.5)∑

p

∑
i
|ϕi

p〉〈ϕ
i
p| = 1̂ (5.6)

i.e. the states |ϕi
p〉 form a basis.





We seek an approximative solution of the full Hamiltonian Ĥ(λ) = Ĥ0 + λŴ

Ĥ(λ)|ψ(λ)〉 = E(λ)|ψ(λ)〉 (5.7)

where the eigenvalue and eigenvector can be expanded in terms of λ

E(λ) = ε0 + λε1 + . . . + λqεq + . . . (5.8)

|ψ(λ)〉 = |0〉 + λ|1〉 + . . . + λq|q〉 + . . . (5.9)

Inserting these into the eigenvalue equation yields

(
Ĥ0 + λŴ

)  ∞∑
q=0

λq|q〉

 =

 ∞∑
q′=0

λq′εq′


 ∞∑
q=0

λq|q〉

 (5.10)



As this equation must hold for any (small) value of λ, it must hold for each power of
λ separately, giving the equations for various orders of the perturbation:
0th-order: is just the eigenvalue equation of the unperturbed Hamiltonian, ε0 = E0

n

Ĥ0|0〉 = ε0|0〉 (5.11)

1st order: (
Ĥ0 − ε0

)
|1〉 +

(
Ŵ − ε1

)
|0〉 = 0 (5.12)

2nd order (
Ĥ0 − ε0

)
|2〉 +

(
Ŵ − ε1

)
|1〉 − ε2|0〉 = 0 (5.13)

q-th order (
Ĥ0 − ε0

)
|q〉 +

(
Ŵ − ε1

)
|q − 1〉 − ε2|q − 2〉 . . . − εq|0〉 = 0 (5.14)



We shall write |ψ(λ)〉 to be normalized and its phase will be chosen s.t. 〈0|ψ(λ)〉 ∈ R.
For 0th order we have

〈0|0〉 = 1 (5.15)

and to the 1st order we get

〈ψ(λ)|ψ(λ)〉 = [〈0| + λ〈1|] [|0〉 + λ|1〉] + O
(
λ2

)
(5.16)

= 〈0|0〉 + λ [〈1|0〉 + 〈0|1〉] + O
(
λ2

)
(5.17)

Since both 〈0|0〉 = 1 and 〈ψ(λ)|ψ(λ)〉 = 1 we get to the 1st order

λ [〈1|0〉 + 〈0|1〉] = 0

⇒ 〈0|1〉 = 〈1|0〉 = 0 (5.18)



For the 2nd order we get

〈ψ(λ)|ψ(λ)〉 = 〈0|0〉 + λ [〈1|0〉 + 〈0|1〉]

+λ2 [〈2|0〉 + 〈0|2〉 + 〈1|1〉] + O
(
λ3

)
(5.19)

⇒ 〈0|2〉 = 〈2|0〉 = −
1
2
〈1|1〉 (5.20)

and eventually for q-th order we have

〈0|q〉 = 〈q|0〉 = −
1
2
[
〈q − 1|1〉 + 〈q − 2|2〉 + . . . + 〈2|q − 2〉 + 〈1|q − 1〉

]
(5.21)



B. PERTURBATION OF A NON-DEGENERATE LEVEL

We will try to answer how a nondegenerate eigenvalue and eigenvector of the unper-
turbed Hamiltonian Ĥ0

ε0 = E0
n

|0〉 = |φn〉

are modified by introducing the perturbation W.

We will be seeking the eigenvalue En(λ) of the full Hamiltonian Ĥ(λ) which when
λ→ 0 approaches E0

n of Ĥ0.

We will assume that λ is small enough for this eigenvalue to remain non-degenerate.



1. First-order corrections

a. ENERGY CORRECTION
Taking the 1st order equation we found above, and projecting onto |ϕn〉 gives

〈ϕn|
(
Ĥ0 − ε0

)
|1〉 + 〈ϕn|

(
Ŵ − ε1

)
|0〉 = 0 (5.22)

and since |ϕn〉 = |0〉 is the eigenvector of Ĥ0 with the eigenvalue ε0 = E0
n, we obtain

the first order correction to the energy

ε1 = 〈ϕn|Ŵ |0〉 = 〈ϕn|Ŵ |ϕn〉 (5.23)

and the 1st order perturbative expression for the energy eigenvalue of the perturbed
system in the form (recall, W = λŴ)

En(λ) = E0
n + 〈ϕn|W |ϕn〉 + O(λ2)



b. EIGENVECTOR CORRECTION

To find the first-order correction to the eigenvector, we must project the first-order
equation above onto all the vectors of the

{
|ϕi

p〉
}

basis other than |ϕn〉

〈ϕi
p|

(
Ĥ0 − E0

n
)
|1〉 + 〈ϕi

p|
(
Ŵ − ε1

)
|ϕn〉 = 0 (p , n) (5.24)

Since the eigenvectors of Ĥ0 associated with different eigenvalues are orthogonal
ε1〈ϕ

i
p|ϕn〉 = 0 and 〈ϕi

p|Ĥ0 = 〈ϕi
p|E

0
p, we get(

E0
p − E0

n
)
〈ϕi

p|1〉 + 〈ϕ
i
p|Ŵ |ϕn〉 = 0 (5.25)

and

〈ϕi
p|1〉 =

1

E0
n − E0

p
〈ϕi

p|Ŵ |ϕn〉 (p , n) (5.26)



and, since 〈ϕn|1〉 = 〈0|1〉 = 0, the first order correction to the eigenvector can be
written as

|1〉 =
∑
p,n

∑
i

〈ϕi
p|Ŵ |ϕn〉

E0
n − E0

p
|ϕi

p〉 (5.27)

The expression for the eigenvector of the perturbed Hamiltonian to the first-order is
thus

|ψn(λ)〉 = |ϕn〉 +
∑
p,n

∑
i

〈ϕi
p|W |ϕn〉

E0
n − E0

p
|ϕi

p〉 + O
(
λ2

)
(5.28)

The perturbation W mixes the state |φn〉 with the other eigenstates of Ĥ0.



2. Second-order corrections

a. ENERGY CORRECTION

We proceed in a way similar to the previous case. We project the 2nd order equation
obtained above onto |ϕn〉

〈ϕn|
(
Ĥ0 − E0

n
)
|2〉 + 〈ϕn|

(
Ŵ − ε1

)
|1〉 − ε2〈ϕn|ϕn〉 = 0 (5.29)

Since |ϕn〉 = |0〉 is the eigenvector of Ĥ0 with the eigenvalue ε0 = E0
n, the first term is

zero and the second order correction becomes

ε2 = 〈ϕn|Ŵ |1〉 (5.30)



With the expression for |1〉 obtained above we can write the second order correction
to the energy eigenvalue as

ε2 =
∑
p,n

∑
i

∣∣∣〈ϕi
p|Ŵ |ϕn〉

∣∣∣2
E0

n − E0
p

(5.31)

The 2nd order expression for the energy eigenvalue of the perturbed system be-
comes

En(λ) = E0
n + 〈ϕn|W |ϕn〉 +

∑
p,n

∑
i

∣∣∣〈ϕi
p|W |ϕn〉

∣∣∣2
E0

n − E0
p

+ O(λ3) (5.32)



b. EIGENVECTOR CORRECTION

The eigenvector corrections |2〉 can be obtained by projecting the equation(
Ĥ0 − ε0

)
|2〉 +

(
Ŵ − ε1

)
|1〉 − ε2|0〉 = 0 (5.33)

onto the set of basis vectors |φi
p〉 different from |φn〉 and by using the condition

〈0|2〉 = 〈2|0〉 = −
1
2
〈1|1〉 (5.34)



c. UPPER LIMIT OF ε2

What is the error involved in the 1st order perturbation theory?
Consider

ε2 =
∑
p,n

∑
i

∣∣∣〈ϕi
p|Ŵ |ϕn〉

∣∣∣2
E0

n − E0
p

(5.35)

and let the absolute value of difference of E0
n being studied and that of the nearest

level E0
p be ∣∣∣∣E0

n − E0
p

∣∣∣∣ ≥ ∆E (5.36)

then an upper limit for the absolute value of ε2 is

|ε2| ≤
1

∆E

∑
p,n

∑
i

∣∣∣∣〈ϕi
p|Ŵ |ϕn〉

∣∣∣∣2 (5.37)



|ε2| ≤
1

∆E

∑
p,n

∑
i

∣∣∣∣〈ϕi
p|Ŵ |ϕn〉

∣∣∣∣2 (5.38)

=
1

∆E

∑
p,n

∑
i
〈ϕn|Ŵ |ϕi

p〉〈ϕ
i
p|Ŵ |ϕn〉 (5.39)

=
1

∆E
〈ϕn|Ŵ

∑
p,n

∑
i
|ϕi

p〉〈ϕ
i
p|

 Ŵ |ϕn〉 (5.40)

Taking into account the completeness relation

|ϕn〉〈ϕn| +
∑
p,n

∑
i
|ϕi

p〉〈ϕ
i
p| = 1̂ (5.41)



allows us to rewrite the inequality as

|ε2| ≤
1

∆E
〈ϕn|Ŵ

[
1̂ − |ϕn〉〈ϕn|

]
Ŵ |ϕn〉 (5.42)

≤
1

∆E

[
〈ϕn|Ŵ2|ϕn〉 −

(
〈ϕn|Ŵ |ϕn〉

)2
]

=
1

∆E

(
∆Ŵ

)2
(5.43)

An upper limit for the 2nd order term in En(λ) = ε0 + λε1 + λ2ε2 + . . . is then∣∣∣∣λ2ε2

∣∣∣∣ ≤ 1
∆E

(∆W)2 (5.44)

This indicates the order of magnitude of the error committed by taking only the 1st
order correction into account.



C. PERTURBATION OF A DEGENERATE STATE

Assume that the level E0
n to be gn-fold degenerate, and E0

n be the corresponding
gn-fold dimensional eigenspace of Ĥ0.

Now the choice

ε0 = E0
n (5.45)

is not sufficient to determine |0〉 since the equation Ĥ0|0〉 = ε0|0〉can be satisfied by
any linear combination of vectors in E0

n.



To determine |0〉 and ε1 we project the 1st order equation(
Ĥ0 − ε0

)
|1〉 +

(
Ŵ − ε1

)
|0〉 = 0 (5.46)

onto the gn basis vectors |φi
n〉:

since Ĥ0|φ
i
n〉 = ε0|φ

i
n〉 for all |φi

n〉 we obtain the gn relations:

〈ϕi
n|Ŵ |0〉 = ε1〈ϕ

i
n|0〉 (5.47)

Now using the completeness relation∑
p

∑
i′
〈ϕi

n|Ŵ |ϕ
i′
p〉〈ϕ

i′
p|0〉 = ε1〈ϕ

i
n|0〉 (5.48)

where 〈ϕi′
p|0〉 = 0 for all p , n.



Taking into account only the terms where p = n we get

gn∑
i′=1
〈ϕi

n|Ŵ |ϕ
i′
n〉〈ϕ

i′
n |0〉 = ε1〈ϕ

i
n|0〉 (5.49)

where the gn × gn matrix

Ŵ(n) = 〈ϕi
n|Ŵ |ϕ

i′
n〉 (5.50)

is the restriction of Ŵ to the eigenspace E0
n.



We can rewrite the equation

gn∑
i′=1
〈ϕi

n|Ŵ |ϕ
i′
n〉〈ϕ

i′
n |0〉 = ε1〈ϕ

i
n|0〉 (5.51)

into a vector equation

Ŵ(n)|0〉 = ε1|0〉 (5.52)

To calculate the eigenvalues (to the 1st order) and the eigenstates (to the 0th or-
der) of the Hamiltonian corresponding to a degenerate unperturbed state E0

n, we
have to diagonalize the matrix W(n), which represents the perturbation Ŵ inside the
eigenspace E0

n associated with the eigenvalue E0
n.



The first order effect of the perturbation is given by the various roots of the charac-
teristic equation of W(n), ε j

1( j = 1, 2, . . . , f (1)
n ).

Since W(n) is self-adjoint, its eigenvalues are real numbers and their degrees of
degeneracy sum to gn.

Each eigenvalue introduces a different energy correction, i.e. under W = λŴ, the
degenerate levels split to the 1st order into f (1)

n distinct sublevels

En, j(λ) = E0
n + λε

j
1 j = 1, 2, . . . , f (1)

n ≤ gn (5.53)



We shall now choose an eigenvalue ε j
1 of W(n):

- if it is non-degenerate, the corresponding vector |0〉 is completely determined, i.e.
there exists a single eigenvalue E(λ) of Ĥ(λ) which is

E0
n + λε

j
1 (5.54)

and is non-degenerate;

- if it is q-fold degenerate, the equation

W(n)|0〉 = ε1|0〉 (5.55)

indicates only that |0〉 belongs to the corresponding q-dimensional subspace F (1)
j .


