CHAPTER 5: STATIONARY PERTURBATION THEORY

(From Cohen-Tannoudji, Chapter XI)



A. DESCRIPTION OF THE METHOD
Approximation methods to obtain analytical solution of eigenvalue problems.

1. Statement of the problem

We consider a time-independent perturbation

H = Hy+W (5.1)

of the time-independent Hamiltonian H,, whose eigenvalues and eigenvectors are
known and which captures the essential physics, by an additional term

W = aw (5.2)
1 < 1 (5.3)



We assume that the eigenvalues and eigenstates of Ay are known and that the un-
perturbed energies form a discrete spectrum E}) with eigenvectors |¢}) (where the
index i refers to degeneracy):

Holely = Edlel) (5.4)
where
(Pplel) = Opprdi (5.5)
PN A AR (5.6)
l

p
l.e. the states |go§,) form a basis.



E'(2)

E%(2)

E°\(A)




We seek an approximative solution of the full Hamiltonian H(1) = Hy + AW

HDD)) = EQ)W () (5.7)

where the eigenvalue and eigenvector can be expanded in terms of A
EQ) = gy+de1+...+A5+... (5.8)
(D)) = [0+ +...+Aqg) +...
Inserting these into the eigenvalue equation yields

i Vlg) i ﬂ’sq/} [i Vg
q'=0 g=0

q=0

(Ao + aW) = (5.10)




As this equation must hold for any (small) value of 4, it must hold for each power of
A separately, giving the equations for various orders of the perturbation:
Oth-order: is just the eigenvalue equation of the unperturbed Hamiltonian, gy = E,(,Z

Hol0) = &9l0) (5.11)

1st order:
(Ao - o)1) + (W -&1)10) = 0 (5.12)

2nd order
(Ao —20)12) + (W —21)I1) = £,00) = 0 (5.13)

g-th order

(Ao —e0)la) + (W —&1)lg— 1) —e2lg —2)... — &40y = 0 (5.14)



We shall write |/(1)) to be normalized and its phase will be chosen s.t. (Ojy(1)) € R.

For Oth order we have

0[0) =1

and to the 1st order we get

W) = [0+ K110} + AL +0(2%)

= (0]0) + A[{110) + O[1)] + O (/12)

Since both (0|0) = 1 and (y()|y(1)) = 1 we get to the 1st order

A0 + O[] =

0
= (0[1) = (1]0} = 0

(5.15)

(5.18)



For the 2nd order we get

WD) = 0]0) + A[(1]0) + <O[1)]
+22[(210) + (012) + (1[1)] + O () (5.19)

1
= (012) =20 = -5 (5.20)

and eventually for g-th order we have

[{g— 1LY + (g —212) + ...+ 2lg - 2) + (llg - 1)] (5.21)

1
(Olg) = {ql0) = ~5



B. PERTURBATION OF A NON-DEGENERATE LEVEL

We will try to answer how a nondegenerate eigenvalue and eigenvector of the unper-
turbed Hamiltonian A

g = E91
0> = |dn)

are modified by introducing the perturbation W.

We will be seeking the eigenvalue E,(1) of the full Hamiltonian A(1) which when
A — 0 approaches EV of Hy.

We will assume that A is small enough for this eigenvalue to remain non-degenerate.



1. First-order corrections

a. ENERGY CORRECTION
Taking the 1st order equation we found above, and projecting onto |¢,,) gives
(pnl (Ho — £0) 11 + {al (W = £1)10) = 0 (5.22)

and since |¢;) = |0) is the eigenvector of FIO with the eigenvalue gg = E,g, we obtain
the first order correction to the energy

g1 = {ealWI0) = {0n|Wlpn) (5.23)

and the 1st order perturbative expression for the energy eigenvalue of the perturbed
system in the form (recall, W = AW)

En(2) = EY + (ol Wlgn) + O(1?)




b. EIGENVECTOR CORRECTION

To find the first-order correction to the eigenvector, we must project the first-order
equation above onto all the vectors of the {|¢§,)} basis other than |¢,)

(@bl (Ho = EQ) 11 + (@bl (W —&1)len) =0 (p #n) (5.24)
Since the eigenvectors of H associated with different eigenvalues are orthogonal
e1(plen) = 0 and (g}, Hy = (¢}, |}, we get

(ES - EQ) (¢ 11) + (@b Wign) = 0 (5.25)

and

. 1 CA
Chll) = (@I Wign)  (p % 1) (5.26)
E9 - EY



and, since (¢u|1) = (0]1) = 0, the first order correction to the eigenvector can be
written as

<90 Wlen) ;
=, 2, l(’) e ) (5.27)

p#n i

The expression for the eigenvector of the perturbed Hamiltonian to the first-order is
thus

Wlpn) .
(D) = |¢n>+22<¢’g' ';0>|¢;>+0(12) (5.28)

p#n |

The perturbation W mixes the state |¢,,) with the other eigenstates of A.



2. Second-order corrections

a. ENERGY CORRECTION

We proceed in a way similar to the previous case. We project the 2nd order equation
obtained above onto |¢;)

Conl (Hlo — ER) 12 + (eul (W = £1) 1) = &x¢nlgn) = 0 (5.29)

Since |¢y,) = |0) is the eigenvector of Hy with the eigenvalue g = E,(,Z, the first term is
zero and the second order correction becomes

g = {(pnW|1) (5.30)



With the expression for |1) obtained above we can write the second order correction
to the energy eigenvalue as

_y Z |<<,op|W|son>| 531)

pFn i
The 2nd order expression for the energy e|genvalue of the perturbed system be-
comes

; 2
0| Wign)|
E)-E)

En() = Ep+{ealWlgny+ > > [ +O() (5.32)

p#n |



b. EIGENVECTOR CORRECTION

The eigenvector corrections |2) can be obtained by projecting the equation

(Ao —20) 12y + (W = &1)11) - £20) = 0 (5.33)

onto the set of basis vectors |¢§9> different from |¢,,) and by using the condition

1
(012) = €20y = =5 X111 (5-34)



c. UPPER LIMIT OF ¢,

What is the error involved in the 1st order perturbation theory?
Consider

Y Z |<sop|W|<,on>| 5.35)

pFn i

and let the absolute value of difference of E,(,Z being studied and that of the nearest
level E}) be

- Eg| > AE (5.36)
then an upper limit for the absolute value of ¢, is

el < AEZZ|<%'W'¢">

p#n i

(5.37)
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DI AL

p#Fn i

| o
= o 2 2 (enlWieh X Wien)

p#Fn i
DI AA

p#Fn |

1 A o
= E(QOMW Wlpn)

Taking into account the completeness relation

enXonl + D D eyl = 1

p#Fn |

(5.38)

(5.39)

(5.40)

(5.41)



allows us to rewrite the inequality as

| A TA A
o2l < SenlW [T = lon)onl | Wign) (5.42)

< <= [V - (G Wiow)’| = 1= (AW) (543

An upper limit for the 2nd order term in E, (1) = g + Adep + %6 + ... s then

1
'1282\ < — (AW)? (5.44)

This indicates the order of magnitude of the error committed by taking only the 1st
order correction into account.



C. PERTURBATION OF A DEGENERATE STATE

Assume that the level E to be g,-fold degenerate, and &Y be the corresponding
gn-fold dimensional eigenspace of Hy.

Now the choice
gg = EV (5.45)

is not sufficient to determine |0) since the equation H0|O> = ¢pl0)can be satisfied by
any linear combination of vectors in E.



To determine |0) and €; we project the 1st order equation

(Ao - o)1) + (W =-&1)10) = 0 (5.46)

onto the g, basis vectors |¢.):

since Holp.) = €old’,) for all |¢%) we obtain the g, relations:

@LIWI0y = £1(£}]0) (5.47)

Now using the completeness relation

DD KehWIhXhl0y = &1(}hl0) (5.48)
p v

where (¢£0) = 0 for all p # n.



Taking into account only the terms where p = n we get

8n
D (Wi Xehl0) = s1(g,i0) (5.49)
i’=1

where the g, X g, matrix

W = (ol Wiely (5.50)

is the restriction of W to the eigenspace &V.



We can rewrite the equation

8n
D (Wi )ehl0) = s1(ghi0) (5.51)
/=1

into a vector equation

Wm0y = £0) (5.52)

To calculate the eigenvalues (to the 1st order) and the eigenstates (to the Oth or-
der) of the Hamiltonian corresponding to a degenerate unperturbed state E,(,f, we
have to diagonalize the matrix W which represents the perturbation W inside the

eigenspace 82 associated with the eigenvalue E,Q.



The first order effect of the perturbation is given by the various roots of the charac-
teristic equation of W™, &/(j = 1,2,..., fD),

Since W™ is self-adjoint, its eigenvalues are real numbers and their degrees of
degeneracy sum to g;,.

Each eigenvalue introduces a different energy correction, i.e. under W = AW, the
degenerate levels split to the 1st order into f,,El) distinct sublevels

Enj)=Ed+ ] j=12..., /" <a (5.53)



We shall now choose an eigenvalue €] of W

- if it is non-degenerate, the corresponding vector |0) is completely determined, i.e.
there exists a single eigenvalue E(1) of H(1) which is

EQ + e (5.54)

and is non-degenerate;

- if it is g-fold degenerate, the equation

W0y = €]0) (5.55)

indicates only that |0) belongs to the corresponding g-dimensional subspace ?’;l).



