CHAPTER 5: STATIONARY PERTURBATION THEORY

(From Cohen-Tannoudji, Chapter XI)

A. DESCRIPTION OF THE METHOD

Approximation methods to obtain analytical solution of eigenvalue problems.

1. Statement of the problem

We consider a time-independent perturbation

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+W \tag{5.1}
\end{equation*}
$$

of the time-independent Hamiltonian \hat{H}_{0}, whose eigenvalues and eigenvectors are known and which captures the essential physics, by an additional term

$$
\begin{align*}
W & =\lambda \hat{W} \tag{5.2}\\
\lambda & \ll 1 \tag{5.3}
\end{align*}
$$

We assume that the eigenvalues and eigenstates of \hat{H}_{0} are known and that the unperturbed energies form a discrete spectrum E_{p}^{0} with eigenvectors $\left|\varphi_{p}^{i}\right\rangle$ (where the index i refers to degeneracy):

$$
\begin{equation*}
\hat{H}_{0}\left|\varphi_{p}^{i}\right\rangle=E_{p}^{0}\left|\varphi_{p}^{i}\right\rangle \tag{5.4}
\end{equation*}
$$

where

$$
\begin{align*}
\left\langle\varphi_{p}^{i} \mid \varphi_{p^{\prime}}^{i^{\prime}}\right\rangle & =\delta_{p p^{\prime}} \delta_{i i^{\prime}} \tag{5.5}\\
\sum_{p} \sum_{i}\left|\varphi_{p}^{i}\right\rangle\left\langle\varphi_{p}^{i}\right| & =\hat{1} \tag{5.6}
\end{align*}
$$

i.e. the states $\left|\varphi_{p}^{i}\right\rangle$ form a basis.

We seek an approximative solution of the full Hamiltonian $\hat{H}(\lambda)=\hat{H}_{0}+\lambda \hat{W}$

$$
\begin{equation*}
\hat{H}(\lambda)|\psi(\lambda)\rangle=E(\lambda)|\psi(\lambda)\rangle \tag{5.7}
\end{equation*}
$$

where the eigenvalue and eigenvector can be expanded in terms of λ

$$
\begin{align*}
E(\lambda) & =\varepsilon_{0}+\lambda \varepsilon_{1}+\ldots+\lambda^{q} \varepsilon_{q}+\ldots \tag{5.8}\\
|\psi(\lambda)\rangle & =|0\rangle+\lambda|1\rangle+\ldots+\lambda^{q}|q\rangle+\ldots \tag{5.9}
\end{align*}
$$

Inserting these into the eigenvalue equation yields

$$
\begin{equation*}
\left(\hat{H}_{0}+\lambda \hat{W}\right)\left[\sum_{q=0}^{\infty} \lambda^{q}|q\rangle\right]=\left[\sum_{q^{\prime}=0}^{\infty} \lambda^{q^{\prime}} \varepsilon_{q^{\prime}}\right]\left[\sum_{q=0}^{\infty} \lambda^{q}|q\rangle\right] \tag{5.10}
\end{equation*}
$$

As this equation must hold for any (small) value of λ, it must hold for each power of λ separately, giving the equations for various orders of the perturbation: Oth-order: is just the eigenvalue equation of the unperturbed Hamiltonian, $\varepsilon_{0}=E_{n}^{0}$

$$
\begin{equation*}
\hat{H}_{0}|0\rangle=\varepsilon_{0}|0\rangle \tag{5.11}
\end{equation*}
$$

1st order:

$$
\begin{equation*}
\left(\hat{H}_{0}-\varepsilon_{0}\right)|1\rangle+\left(\hat{W}-\varepsilon_{1}\right)|0\rangle=0 \tag{5.12}
\end{equation*}
$$

2nd order

$$
\begin{equation*}
\left(\hat{H}_{0}-\varepsilon_{0}\right)|2\rangle+\left(\hat{W}-\varepsilon_{1}\right)|1\rangle-\varepsilon_{2}|0\rangle=0 \tag{5.13}
\end{equation*}
$$

q-th order

$$
\begin{equation*}
\left(\hat{H}_{0}-\varepsilon_{0}\right)|q\rangle+\left(\hat{W}-\varepsilon_{1}\right)|q-1\rangle-\varepsilon_{2}|q-2\rangle \ldots-\varepsilon_{q}|0\rangle=0 \tag{5.14}
\end{equation*}
$$

We shall write $|\psi(\lambda)\rangle$ to be normalized and its phase will be chosen s.t. $\langle 0 \mid \psi(\lambda)\rangle \in \mathbb{R}$. For Oth order we have

$$
\begin{equation*}
\langle 0 \mid 0\rangle=1 \tag{5.15}
\end{equation*}
$$

and to the 1st order we get

$$
\begin{align*}
\langle\psi(\lambda) \mid \psi(\lambda)\rangle & =[\langle 0|+\lambda\langle 1|][|0\rangle+\lambda|1\rangle]+O\left(\lambda^{2}\right) \tag{5.16}\\
& =\langle 0 \mid 0\rangle+\lambda[\langle 1 \mid 0\rangle+\langle 0 \mid 1\rangle]+O\left(\lambda^{2}\right) \tag{5.17}
\end{align*}
$$

Since both $\langle 0 \mid 0\rangle=1$ and $\langle\psi(\lambda) \mid \psi(\lambda)\rangle=1$ we get to the 1 st order

$$
\begin{align*}
& \lambda[\langle 1 \mid 0\rangle+\langle 0 \mid 1\rangle]=0 \\
& \Rightarrow\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0 \tag{5.18}
\end{align*}
$$

For the 2nd order we get

$$
\begin{align*}
&\langle\psi(\lambda) \mid \psi(\lambda)\rangle=\langle 0 \mid 0\rangle+\lambda[\langle 1 \mid 0\rangle+\langle 0 \mid 1\rangle] \\
&+\lambda^{2}[\langle 2 \mid 0\rangle+\langle 0 \mid 2\rangle+\langle 1 \mid 1\rangle]+O\left(\lambda^{3}\right) \tag{5.19}\\
& \Rightarrow\langle 0 \mid 2\rangle=\langle 2 \mid 0\rangle=-\frac{1}{2}\langle 1 \mid 1\rangle \tag{5.20}
\end{align*}
$$

and eventually for q-th order we have

$$
\begin{equation*}
\langle 0 \mid q\rangle=\langle q \mid 0\rangle=-\frac{1}{2}[\langle q-1 \mid 1\rangle+\langle q-2 \mid 2\rangle+\ldots+\langle 2 \mid q-2\rangle+\langle 1 \mid q-1\rangle] \tag{5.21}
\end{equation*}
$$

B. PERTURBATION OF A NON-DEGENERATE LEVEL

We will try to answer how a nondegenerate eigenvalue and eigenvector of the unperturbed Hamiltonian \hat{H}_{0}

$$
\begin{aligned}
\varepsilon_{0} & =E_{n}^{0} \\
|0\rangle & =\left|\phi_{n}\right\rangle
\end{aligned}
$$

are modified by introducing the perturbation W.

We will be seeking the eigenvalue $E_{n}(\lambda)$ of the full Hamiltonian $\hat{H}(\lambda)$ which when $\lambda \rightarrow 0$ approaches E_{n}^{0} of \hat{H}_{0}.

We will assume that λ is small enough for this eigenvalue to remain non-degenerate.

1. First-order corrections

a. ENERGY CORRECTION

Taking the 1st order equation we found above, and projecting onto $\left|\varphi_{n}\right\rangle$ gives

$$
\begin{equation*}
\left\langle\varphi_{n}\right|\left(\hat{H}_{0}-\varepsilon_{0}\right)|1\rangle+\left\langle\varphi_{n}\right|\left(\hat{W}-\varepsilon_{1}\right)|0\rangle=0 \tag{5.22}
\end{equation*}
$$

and since $\left|\varphi_{n}\right\rangle=|0\rangle$ is the eigenvector of \hat{H}_{0} with the eigenvalue $\varepsilon_{0}=E_{n}^{0}$, we obtain the first order correction to the energy

$$
\begin{equation*}
\varepsilon_{1}=\left\langle\varphi_{n}\right| \hat{W}|0\rangle=\left\langle\varphi_{n}\right| \hat{W}\left|\varphi_{n}\right\rangle \tag{5.23}
\end{equation*}
$$

and the 1st order perturbative expression for the energy eigenvalue of the perturbed system in the form (recall, $W=\lambda \hat{W}$)

$$
E_{n}(\lambda)=E_{n}^{0}+\left\langle\varphi_{n}\right| W\left|\varphi_{n}\right\rangle+O\left(\lambda^{2}\right)
$$

b. EIGENVECTOR CORRECTION

To find the first-order correction to the eigenvector, we must project the first-order equation above onto all the vectors of the $\left\{\left|\varphi_{p}^{i}\right\rangle\right\}$ basis other than $\left|\varphi_{n}\right\rangle$

$$
\begin{equation*}
\left\langle\varphi_{p}^{i}\right|\left(\hat{H}_{0}-E_{n}^{0}\right)|1\rangle+\left\langle\varphi_{p}^{i}\right|\left(\hat{W}-\varepsilon_{1}\right)\left|\varphi_{n}\right\rangle=0 \quad(p \neq n) \tag{5.24}
\end{equation*}
$$

Since the eigenvectors of \hat{H}_{0} associated with different eigenvalues are orthogonal $\varepsilon_{1}\left\langle\varphi_{p}^{i} \mid \varphi_{n}\right\rangle=0$ and $\left\langle\varphi_{p}^{i}\right| \hat{H}_{0}=\left\langle\varphi_{p}^{i}\right| E_{p}^{0}$, we get

$$
\begin{equation*}
\left(E_{p}^{0}-E_{n}^{0}\right)\left\langle\varphi_{p}^{i} \mid 1\right\rangle+\left\langle\varphi_{p}^{i}\right| \hat{W}\left|\varphi_{n}\right\rangle=0 \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\varphi_{p}^{i} \mid 1\right\rangle=\frac{1}{E_{n}^{0}-E_{p}^{0}}\left\langle\varphi_{p}^{i}\right| \hat{W}\left|\varphi_{n}\right\rangle \quad(p \neq n) \tag{5.26}
\end{equation*}
$$

and, since $\left\langle\varphi_{n} \mid 1\right\rangle=\langle 0 \mid 1\rangle=0$, the first order correction to the eigenvector can be written as

$$
\begin{equation*}
|1\rangle=\sum_{p \neq n} \sum_{i} \frac{\left\langle\varphi_{p}^{i}\right| \hat{W}\left|\varphi_{n}\right\rangle}{E_{n}^{0}-E_{p}^{0}}\left|\varphi_{p}^{i}\right\rangle \tag{5.27}
\end{equation*}
$$

The expression for the eigenvector of the perturbed Hamiltonian to the first-order is thus

$$
\begin{equation*}
\left|\psi_{n}(\lambda)\right\rangle=\left|\varphi_{n}\right\rangle+\sum_{p \neq n} \sum_{i} \frac{\left\langle\varphi_{p}^{i}\right| W\left|\varphi_{n}\right\rangle}{E_{n}^{0}-E_{p}^{0}}\left|\varphi_{p}^{i}\right\rangle+O\left(\lambda^{2}\right) \tag{5.28}
\end{equation*}
$$

The perturbation W mixes the state $\left|\phi_{n}\right\rangle$ with the other eigenstates of \hat{H}_{0}.

2. Second-order corrections

a. ENERGY CORRECTION

We proceed in a way similar to the previous case. We project the 2nd order equation obtained above onto $\left|\varphi_{n}\right\rangle$

$$
\begin{equation*}
\left\langle\varphi_{n}\right|\left(\hat{H}_{0}-E_{n}^{0}\right)|2\rangle+\left\langle\varphi_{n}\right|\left(\hat{W}-\varepsilon_{1}\right)|1\rangle-\varepsilon_{2}\left\langle\varphi_{n} \mid \varphi_{n}\right\rangle=0 \tag{5.29}
\end{equation*}
$$

Since $\left|\varphi_{n}\right\rangle=|0\rangle$ is the eigenvector of \hat{H}_{0} with the eigenvalue $\varepsilon_{0}=E_{n}^{0}$, the first term is zero and the second order correction becomes

$$
\begin{equation*}
\varepsilon_{2}=\left\langle\varphi_{n}\right| \hat{W}|1\rangle \tag{5.30}
\end{equation*}
$$

With the expression for $|1\rangle$ obtained above we can write the second order correction to the energy eigenvalue as

$$
\begin{equation*}
\varepsilon_{2}=\sum_{p \neq n} \sum_{i} \frac{\left.\left|\left\langle\varphi_{p}^{i}\right| \hat{W}\right| \varphi_{n}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{p}^{0}} \tag{5.31}
\end{equation*}
$$

The 2nd order expression for the energy eigenvalue of the perturbed system becomes

$$
\begin{equation*}
E_{n}(\lambda)=E_{n}^{0}+\left\langle\varphi_{n}\right| W\left|\varphi_{n}\right\rangle+\sum_{p \neq n} \sum_{i} \frac{\left.\left|\left\langle\varphi_{p}^{i}\right| W\right| \varphi_{n}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{p}^{0}}+O\left(\lambda^{3}\right) \tag{5.32}
\end{equation*}
$$

b. EIGENVECTOR CORRECTION

The eigenvector corrections $|2\rangle$ can be obtained by projecting the equation

$$
\begin{equation*}
\left(\hat{H}_{0}-\varepsilon_{0}\right)|2\rangle+\left(\hat{W}-\varepsilon_{1}\right)|1\rangle-\varepsilon_{2}|0\rangle=0 \tag{5.33}
\end{equation*}
$$

onto the set of basis vectors $\left|\phi_{p}^{i}\right\rangle$ different from $\left|\phi_{n}\right\rangle$ and by using the condition

$$
\begin{equation*}
\langle 0 \mid 2\rangle=\langle 2 \mid 0\rangle=-\frac{1}{2}\langle 1 \mid 1\rangle \tag{5.34}
\end{equation*}
$$

c. UPPER LIMIT OF ε_{2}

What is the error involved in the 1st order perturbation theory? Consider

$$
\begin{equation*}
\varepsilon_{2}=\sum_{p \neq n} \sum_{i} \frac{\left.\left|\left\langle\varphi_{p}^{i}\right| \hat{W}\right| \varphi_{n}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{p}^{0}} \tag{5.35}
\end{equation*}
$$

and let the absolute value of difference of E_{n}^{0} being studied and that of the nearest level E_{p}^{0} be

$$
\begin{equation*}
\left|E_{n}^{0}-E_{p}^{0}\right| \geq \Delta E \tag{5.36}
\end{equation*}
$$

then an upper limit for the absolute value of ϵ_{2} is

$$
\begin{equation*}
\left.\left|\varepsilon_{2}\right| \leq \frac{1}{\Delta E} \sum_{p \neq n} \sum_{i}\left|\left\langle\varphi_{p}^{i}\right| \hat{W}\right| \varphi_{n}\right\rangle\left.\right|^{2} \tag{5.37}
\end{equation*}
$$

$$
\begin{align*}
\left|\varepsilon_{2}\right| & \left.\leq \frac{1}{\Delta E} \sum_{p \neq n} \sum_{i}\left|\left\langle\varphi_{p}^{i}\right| \hat{W}\right| \varphi_{n}\right\rangle\left.\right|^{2} \tag{5.38}\\
& =\frac{1}{\Delta E} \sum_{p \neq n} \sum_{i}\left\langle\varphi_{n}\right| \hat{W}\left|\varphi_{p}^{i}\right\rangle\left\langle\varphi_{p}^{i}\right| \hat{W}\left|\varphi_{n}\right\rangle \tag{5.39}\\
& =\frac{1}{\Delta E}\left\langle\varphi_{n}\right| \hat{W}\left[\sum_{p \neq n} \sum_{i}\left|\varphi_{p}^{i}\right\rangle\left\langle\varphi_{p}^{i}\right| \hat{W}\left|\varphi_{n}\right\rangle\right. \tag{5.40}
\end{align*}
$$

Taking into account the completeness relation

$$
\begin{equation*}
\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+\sum_{p \neq n} \sum_{i}\left|\varphi_{p}^{i}\right\rangle\left\langle\varphi_{p}^{i}\right|=\hat{1} \tag{5.41}
\end{equation*}
$$

allows us to rewrite the inequality as

$$
\begin{align*}
\left|\varepsilon_{2}\right| & \leq \frac{1}{\Delta E}\left\langle\varphi_{n}\right| \hat{W}\left[\hat{1}-\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right] \hat{W}\left|\varphi_{n}\right\rangle \tag{5.42}\\
& \leq \frac{1}{\Delta E}\left[\left\langle\varphi_{n}\right| \hat{W}^{2}\left|\varphi_{n}\right\rangle-\left(\left\langle\varphi_{n}\right| \hat{W}\left|\varphi_{n}\right\rangle\right)^{2}\right]=\frac{1}{\Delta E}(\Delta \hat{W})^{2} \tag{5.43}
\end{align*}
$$

An upper limit for the 2 nd order term in $E_{n}(\lambda)=\epsilon_{0}+\lambda \epsilon_{1}+\lambda^{2} \epsilon_{2}+\ldots$ is then

$$
\begin{equation*}
\left|\lambda^{2} \varepsilon_{2}\right| \leq \frac{1}{\Delta E}(\Delta W)^{2} \tag{5.4}
\end{equation*}
$$

This indicates the order of magnitude of the error committed by taking only the 1st order correction into account.

C. PERTURBATION OF A DEGENERATE STATE

Assume that the level E_{n}^{0} to be g_{n}-fold degenerate, and \mathcal{E}_{n}^{0} be the corresponding g_{n}-fold dimensional eigenspace of \hat{H}_{0}.

Now the choice

$$
\begin{equation*}
\varepsilon_{0}=E_{n}^{0} \tag{5.45}
\end{equation*}
$$

is not sufficient to determine $|0\rangle$ since the equation $\hat{H}_{0}|0\rangle=\epsilon_{0}|0\rangle$ can be satisfied by any linear combination of vectors in \mathcal{E}_{n}^{0}.

To determine $|0\rangle$ and ϵ_{1} we project the 1 st order equation

$$
\begin{equation*}
\left(\hat{H}_{0}-\varepsilon_{0}\right)|1\rangle+\left(\hat{W}-\varepsilon_{1}\right)|0\rangle=0 \tag{5.46}
\end{equation*}
$$

onto the g_{n} basis vectors $\left|\phi_{n}^{i}\right\rangle$:
since $\hat{H}_{0}\left|\phi_{n}^{i}\right\rangle=\epsilon_{0}\left|\phi_{n}^{i}\right\rangle$ for all $\left|\phi_{n}^{i}\right\rangle$ we obtain the g_{n} relations:

$$
\begin{equation*}
\left\langle\varphi_{n}^{i}\right| \hat{W}|0\rangle=\varepsilon_{1}\left\langle\varphi_{n}^{i} \mid 0\right\rangle \tag{5.47}
\end{equation*}
$$

Now using the completeness relation

$$
\begin{equation*}
\sum_{p} \sum_{i^{\prime}}\left\langle\varphi_{n}^{i}\right| \hat{W}\left|\varphi_{p}^{i_{p}^{\prime}}\right\rangle\left\langle\varphi_{p}^{i^{\prime}} \mid 0\right\rangle=\varepsilon_{1}\left\langle\varphi_{n}^{i} \mid 0\right\rangle \tag{5.48}
\end{equation*}
$$

where $\left\langle\varphi_{p}^{i^{\prime}} \mid 0\right\rangle=0$ for all $p \neq n$.

Taking into account only the terms where $p=n$ we get

$$
\begin{equation*}
\sum_{i^{\prime}=1}^{g_{n}}\left\langle\varphi_{n}^{i}\right| \hat{W}\left|\varphi_{n}^{i^{\prime}}\right\rangle\left\langle\varphi_{n}^{i^{\prime}} \mid 0\right\rangle=\varepsilon_{1}\left\langle\varphi_{n}^{i} \mid 0\right\rangle \tag{5.49}
\end{equation*}
$$

where the $g_{n} \times g_{n}$ matrix

$$
\begin{equation*}
\hat{W}^{(n)}=\left\langle\varphi_{n}^{i}\right| \hat{W}\left|\varphi_{n}^{i^{\prime}}\right\rangle \tag{5.50}
\end{equation*}
$$

is the restriction of \hat{W} to the eigenspace \mathcal{E}_{n}^{0}.

We can rewrite the equation

$$
\begin{equation*}
\sum_{i^{\prime}=1}^{g_{n}}\left\langle\varphi_{n}^{i}\right| \hat{W}\left|\varphi_{n}^{i^{\prime}}\right\rangle\left\langle\varphi_{n}^{i^{\prime}} \mid 0\right\rangle=\varepsilon_{1}\left\langle\varphi_{n}^{i} \mid 0\right\rangle \tag{5.51}
\end{equation*}
$$

into a vector equation

$$
\begin{equation*}
\hat{W}^{(n)}|0\rangle=\varepsilon_{1}|0\rangle \tag{5.52}
\end{equation*}
$$

To calculate the eigenvalues (to the 1st order) and the eigenstates (to the 0th order) of the Hamiltonian corresponding to a degenerate unperturbed state E_{n}^{0}, we have to diagonalize the matrix $W^{(n)}$, which represents the perturbation \hat{W} inside the eigenspace \mathcal{E}_{n}^{0} associated with the eigenvalue E_{n}^{0}.

The first order effect of the perturbation is given by the various roots of the characteristic equation of $W^{(n)}, \epsilon_{1}^{j}\left(j=1,2, \ldots, f_{n}^{(1)}\right)$.

Since $W^{(n)}$ is self-adjoint, its eigenvalues are real numbers and their degrees of degeneracy sum to g_{n}.

Each eigenvalue introduces a different energy correction, i.e. under $W=\lambda \hat{W}$, the degenerate levels split to the 1 st order into $f_{n}^{(1)}$ distinct sublevels

$$
\begin{equation*}
E_{n, j}(\lambda)=E_{n}^{0}+\lambda \varepsilon_{1}^{j} \quad j=1,2, \ldots, f_{n}^{(1)} \leq g_{n} \tag{5.53}
\end{equation*}
$$

We shall now choose an eigenvalue ϵ_{1}^{j} of $W^{(n)}$:

- if it is non-degenerate, the corresponding vector $|0\rangle$ is completely determined, i.e. there exists a single eigenvalue $E(\lambda)$ of $\hat{H}(\lambda)$ which is

$$
\begin{equation*}
E_{n}^{0}+\lambda \varepsilon_{1}^{j} \tag{5.54}
\end{equation*}
$$

and is non-degenerate;

- if it is q-fold degenerate, the equation

$$
\begin{equation*}
W^{(n)}|0\rangle=\epsilon_{1}|0\rangle \tag{5.55}
\end{equation*}
$$

indicates only that $|0\rangle$ belongs to the corresponding q-dimensional subspace $\mathcal{F}_{j}^{(1)}$.

