Thermodynamics (MP460) Assignment 8

Please hand in your solutions no later than Thursday, November 28, 10:05 am. Late assignments will not be accepted. If you have questions about this assignment, please ask your lecturer, Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 8.1

This is exercise 3 on page 76 of the book by Fermi.

Ex. 8.1

(a) Derive that the heat capacities C_{V} and C_{p} of a system described by the thermodynamic variables pressure, volume and temperature (p, V, T), and with energy U, are given by the following expressions,

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \quad \text { and } \quad C_{p}=\left(\frac{\partial U}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p}
$$

(b) Derive that $C_{p}-C_{V}=\left(\frac{\partial V}{\partial T}\right)_{p}\left(\left(\frac{\partial U}{\partial V}\right)_{T}+p\right)$
(b) Derive from the formula given in part (b) that $C_{p}-C_{V}=T\left(\frac{\partial p}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{p}$. You may use the Maxwell relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}$ without proof.
(c) Consider a gas which has equation of state

$$
p(V-n b)=n R T\left(T / T_{0}\right)^{\gamma}
$$

where b, T_{0} and γ are constants, n is the number of mol of gas and R is the gas constant. Show that for this gas, $C_{p}-C_{V}=(\gamma+1)^{2} n R\left(T / T_{0}\right)^{\gamma}$

