Thermodynamics (MP460) Assignment 4

Please hand in your solutions no later than Monday, November 7, 10:05 am. Late assignments will not be accepted. If you have questions about this assignment, please ask your lecturer, Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 5.1: The Otto Cycle

An internal combustion engine (e.g. a car engine) has an idealized description as a heat engine. A single cycle of such an engine consists of four steps.

- 1. A mixture of air and fuel vapor, at initial temperature T_1 is adiabatically compressed (in a cylinder) from an initial volume V_1 to a final volume $V_2 < V_1$.
- 2. The mixture is ignited, which raises its temperature to T_2 , at constant volume. We can think of T_2 as the temperature of the hot reservoir (even though there is no hot reservoir, strictly speaking). We also ignore the chemical changes in the gas.
- 3. The mixture is allowed to expand adiabatically until it reaches the initial volume V_1
- 4. Finally, the gas is replaced by a new fuel/air mixture at the initial temperature T_1 and the same volume V_1 . This can be modeled as if the system was simply cooling down at constant volume, in contact with a cold reservoir at temperature T_1 .

This cycle is called the Otto cycle, after Nikolaus August Otto (1832-1891), inventor of the four stroke engine.

- a. Draw the idealized cycle in a (p, V) diagram.
- b. Assume that throughout the process, the gas in the cylinder always has a constant specific heat c_V and energy $U = c_V nT$. Calculate the change in temperature in each of the four steps of the cycle in terms of T_1 , T_2 , V_1 and V_2 .
- c. Express the efficiency of this cycle in terms of the compression ratio $\frac{V_1}{V_2}$

Ex. 5.2: Performance of refrigerators

Consider an idealized refrigerator, let's call it a cooling engine. This engine is in contact with two heat reservoirs at temperatures T_1 and T_2 , with $T_2 > T_1$. In a single cycle, the engine absorbs heat Q_1 from the reservoir at temperature T_1 and it also releases heat Q_2 to the reservoir at temperature T_2 . In the process, the engine does work $L = Q_1 - Q_2$, or rather, work -L has to be done on the engine to operate it for a cycle.

a. Show that $Q_2 \ge Q_1$. Hint: use Kelvin's formulation of the second law.

We define the *coefficient of performance* ξ of the engine as follows,

$$\xi = \frac{Q_1}{-L}$$

b. Show that $\xi > 0$

- c. Consider two cooling engines E and E', both operating between the same temperatures T_1 and T_2 , with $T_2 > T_1$. Call the associated amounts of heat exchanged with the two reservoirs Q_1 , Q_2 and Q'_1 , Q'_2 . Assume that E is reversible. Show that we have $\xi_E \ge \xi_{E'}$ and if both E and E' are reversible, we have $\xi_E = \xi_{E'}$
- d. Show that the maximal value ξ_{max} of the coefficient of performance for a cooling engine working between temperatures T_1 and T_2 (with $T_2 > T_1$) is given by

$$\xi_{max} = \frac{1}{\frac{T_2}{T_1} - 1}$$