Thermodynamics (MP460) Assignment 4

Please hand in your solutions no later than Monday, October 24, 10:05 am. Late assignments will not be accepted. If you have questions about this assignment, please ask your lecturer, Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 4.1: Adiabatic expansion and the atmosphere

A gas has the following equation of state,

$$
\begin{equation*}
p(V-n b)=n R T \tag{1}
\end{equation*}
$$

Here $R=8.31 J /(K \mathrm{~mol})$ is the gas constant, n is the number of moles of gas and b is the minimal molar volume of the gas. The energy of this gas is given by

$$
\begin{equation*}
U=c_{V} n T+W \tag{2}
\end{equation*}
$$

where c_{V} and W are constants (c_{V} is the specific heat per mol at constant volume).
a. Show that the specific heat of the gas at constant pressure is equal to $c_{V}+R$.
b. Derive a formula relating volume and temperature on the adiabatic curves of this gas. Also give a formula relating pressure and temperature.
c. Assume the equation of state above as an approximate description for air. Argue that, in the atmosphere, we must have $\frac{d p}{d h}=-\left(\frac{g M_{m o l} p}{b p+R T}\right)$, where $M_{m o l}$ is the molar mass of air $\left(M_{m o l} \approx 29 \mathrm{~g}\right)$.
d. Find an expression for $\frac{d T}{d h}$, in terms of $p, T c_{V}, g, M_{m o l}$ and b. Assume the temperature difference at different h is caused by the adiabatic expansion of rising air.
e. Estimate the temperature drop per vertical $k m$ in the atmosphere near the surface of the earth at $20^{\circ} \mathrm{C}$. Take b to be the molar volume of liquid air, which is approximately $33 c c$. Take $c_{v}=\frac{5}{2} R$. Compare the result to the estimate in the book by Fermi.

