Thermodynamics (MP460) Assignment 3

Please hand in your solutions no later than Monday, October 17, 10:05 am. Late assignments will not be accepted. If you have questions about this assignment, please ask your lecturer, Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 3.1 and 3.2

Ex. 3.1 is exercise 2 on page 28 of the book by Fermi.
Ex. 3.2 is exercise 3 on page 28 of the book by Fermi.

Ex. 3.3: Useful identities for derivatives

In this exercise, you will derive a number of identities for derivatives which are very useful in thermodynamic calculations. Let A, B and C be three thermodynamic variables related by a single equation of state, so that we can choose two of the variables as the independent variables and then the other will be a function of the first two. For example, we can choose A and B to be independent and then $C=C(A, B)$ is a function of A and B, but we could also choose A and C or B and C as the independent variables. The canonical example would have A, B and C equal to the pressure, temperature and volume of a gas, but the equations below will work for any triple of quantities.
a. We take A and B as independent quantities. In some process, these are varied by infinitesimal amounts $d A$ and $d B$. Write an equation for $d C$ in terms of $d A, d B$ and derivatives of $C(A, B)$.
b. Derive the following three identities

$$
\begin{aligned}
\left(\frac{\partial C}{\partial A}\right)_{B}\left(\frac{\partial A}{\partial B}\right)_{C}+\left(\frac{\partial C}{\partial B}\right)_{A} & =0 \\
\left(\frac{\partial A}{\partial B}\right)_{C}\left(\frac{\partial B}{\partial A}\right)_{C} & =1 \\
\left(\frac{\partial A}{\partial B}\right)_{C}\left(\frac{\partial B}{\partial C}\right)_{A}\left(\frac{\partial C}{\partial A}\right)_{B} & =-1
\end{aligned}
$$

Hint: One way to do this is to use the result of part a. for the case of a process in which C is constant.

