Thermodynamics (MP460) Assignment 2

Please hand in your solutions no later than Monday, October 10, 10:05 am. Late assignments will not be accepted. If you have questions about this assignment, please ask your lecturer, Joost Slingerland, (joost-at-thphys-dot-nuim-dot-ie), Office 1.7D, Mathematical Physics

Ex. 2.1, 2.2 and 2.3

Ex. 2.1 is exercise 1 on page 10 of the book by Fermi. Please give the answer in SI units. Ex. 2.2 is Exercise 4 on page 10 of the book by Fermi. Please give the answer in SI units. Ex. 2.3 is Exercise 1 on page 28 of the book by Fermi. Please give the answer in SI units.

Ex. 2.4: Some properties of the van der Waals gas

The van der Waals equation is an equation of state for a fluid (this may be a gas or a liquid), which, for many fluids is a better approximation than the ideal gas law. The equation takes the following form,

$$
\begin{equation*}
\left(p+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \tag{1}
\end{equation*}
$$

Here $R=8.31 \mathrm{~J} /(\mathrm{Kmol})$ is the gas constant, n is the number of moles of fluid and a and b are parameters which depend on the type of fluid. For air, we have $a=0.136 \mathrm{Jm}^{3} / \mathrm{mol}^{2}$ and $b=3.64 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mol}$. These values are optimized to make the equation of state work for gaseous air. The mass of a mol of air is approximately 29 g .
a. Derive a formula for the pressure of the fluid in terms of the density, temperature and molar mass, and the constants a, b and R.
b. Calculate the pressure for air at temperature $20^{\circ} \mathrm{C}$ and density $1.19 \mathrm{~kg} / \mathrm{m}^{3}$. Compare to the result of exercise $\mathbf{1 . 1 g}$
c. Show that if we take the pressure to infinity at constant temperature, the volume approaches $n b$. Similarly, show that if we take the temperature to zero at constant pressure, the volume approaches $n b$. Give a rough estimate of the density of liquid air (the actual density is $870 \mathrm{~kg} / \mathrm{m}^{3}$)
d. Assume that $V=n b+\epsilon$, with $\epsilon \ll n b$. Show that we have, approximately, $\epsilon=\frac{n R T}{p+\frac{a}{b^{2}}}$. In this approximation, what volume does the fluid take when p is taken to zero at constant temperature?
e. If T is too large, we cannot trust the approximation to ϵ calculated in part d. (why not?). With the values of a and b given for air, calculate the temperature below which, even if $p=0$, we have $\frac{\epsilon}{n b} \leq \frac{1}{10}$ (using the approximation of part d.).
f. Calculate the work performed by a van der Waals gas with parameters a and b when it expands isothermally from an initial volume V_{i} to a final volume V_{f}.
g. Consider the following cycle for a van der Waals gas.

- The gas starts in a state A at pressure p_{A} and volume V_{A} and is then heated at constant volume, from its initial temperature T_{A} to a final temperature T_{B}. We call the state of the gas at this point B.
- The gas is now allowed to expand isothermally to a state C at volume V_{C}.
- The gas is then cooled down at constant volume to a state D which is back at the original temperature T_{A}.
- Finally, the gas is isothermally compressed until it is back in the state A.

Draw a sketch of this cycle in a (p, V)-diagram, indicating the points A, B, C and D. Calculate the total amount of work performed by the gas and the total amount of heat absorbed by the gas in this cycle.

