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Linear models: initial value problem

(1) Spring-mass problem: free undamped motion
Newton'’s law

P dv d?x
=mdad=m-—=m—-=
dt dr?
Hook'’s law
F = —kx

By putting these two laws together we get the desired ODE

equilibrium
position
mg—ks=0

(b)




If we divide the equation by mass m and introduce the angular frequency w = Vk/m

d2x
—: +w2-x = 0
dr=

we have a homogeneous linear second-order which describes simple harmonic
motion or free undamped motion.

The initial conditions associated with the DE above are the amount of initial displace-
ment x(0) = xp, and the initial velocity of the mass x’(0) = x;.

To solve the equation, we note that the auxiliary equation m? + w?* = 0 has two
complex roots m; = iw and my = —iw, SO the general solution is to be

x(1) = ¢y cos wt + ¢ sin wt

We determine ¢| and ¢> from the initial condition and obtain the equation of motion.



Example: The equation of motion

2 |
x(f) = —cos 8 — —sin 8¢
3 6

-

Angular frequency: w = 8
Period: T = 2nn/w = 2n/8 = /4
Frequency: [ =1/T =4/n

Alternative form of x(7):

x(1) = Asin(wt + @)

where A = 4Jc| + ¢7 is the amplitude of free vibrations, and ¢ is the phase angle
defined by




To see the relation between the original solution and its alternative form, we use

trigonometry

x(f) =

In our specific example, we get

x(1)

€] COS Wl + ¢ sin wt

—Ccos 8 — —sin 8¢

! sin(87 + 1.816)

A sin ¢ cos wt + A cos ¢ sin wt
A sin(wrt + ¢)

f

X negative

X positive

X negative - } \/ W
| |

period
(b)



(2) Spring-mass problem: free damped motion

d%x dx
m % = —kx - ﬂE
By dividing by the mass m we get the DE of free damped motion:
Lk )
di2 mdr m
t + 2‘yg +w'x = 0
dr? dr

The corresponding auxiliary equation m* + 2ym + w* = 0 has the roots

mp = -y + \/y?- ~—w? and myp=-y- \/yz - w?

Each solution will contain the damping factor ¢ 7, vy > 0 and thus the displacements

of the mass become negligible over time.



Depending on the algebraic sign of y* — w?, we distinguish three cases:

e Casel: y* - w? >0

In this case the system is overdamped, as the damping coefficient g is large
compared to the spring constant k.

The corresponding solution x(7) = ¢1e™!! + c2e™2! is

N Y A
x(t)=e_7’(cle YWy ehe” VY “”)

\\/ ,




e Casell: Y2 - w? =0

In this case the system is critically damped, because a slight decrease of the
damping would result in oscillatory motion.

The general solution x(1) = ce™\ + cote™2! is

x(1) = e (¢ + ea1)




e Caselll: y> - w? <0

In this case the system is underdamped, as the damping coefficient is small
compared to the spring constant. The roots of the auxiliary equation are now

complex:
mp=-y+i\w2-y2 and my=-y-iw?-y>

and thus the general solution is

undamped
underdamped




(3) Spring-mass problem: driven motion

2
d-x

dx
+p—+kx = f(1
m ﬂdr X f(1)

dr?
By dividing by the mass m we get the DE of driven motion:
d2x+2 dx+ 2x = F()
a2 Ta Tt T

which is a nonhomogeneous differential equation whose solution can be obtained
either using

e the method of undetermined coefficients, or

o the method of variation of parameters.



X

1
steady-state x,,(f)

W/
Example: Transient/Steady-state solutions 7_\/ ,

The solution of the IVP o

1
/2

d>x  dx L, | "
d[z * 6dt * 10-‘ - 25 cos 41‘, dr(U) - i, . (0) =0 J\ x(1) = transient :
1k + steady state
is given by /\ / ,
38 86 25 50
x(1) = Xe + xp = e = cost — —sint| — —— cos 4f + — sin 4t P v
51 51 102 51 P L

(b)

where the first term represents the transient solution and the remaining two terms
are the steady state solution of the IVP.



Example: Undamped forced motion

Consider the IVP

dzx 2 : '
ﬁ +wpx = Fosmwt, x(0)=0, x(0)=0
the complementary solution is x.(f) = ¢ cos wyt + ¢3 sinwpt. We assume the partic-

ular solution in the form xp = Acoswrt + B sin wt, so that

’" 2 _ 2 2 2 AR _ .
Xp +wpxp = A (‘“0 - W )coswt + B(wo - w )smwt = Fpsinwt

Equating coefficients gives A = 0 and B = F/ (w(z) - wz), and thus the general

solution is

. F :
x(1) = cjcoswpt + ¢ sinwgt + 0 sin wt

(g - ?)




The initial conditions yield ¢; = 0 and ¢; = ~wFy/wy (w3 - w?), so the solution of the
IVP is
Fy

x(t) = . (—w sin wyt + wq sin wt)

wo () = )

Though the equation is not defined for w = wy, the limit @ — wq can be calculated
using he LHospital rule giving

, —wsinwql! + wpsinwt  Fp . F
x(t)y = lim Fy L 5 L = 0,) sin wqt — —0 4 cos wt
W) wy (a)(“) — w2) 20_)6 2(1)0

As time increases, so does the response of the system to the driving and the dis-
placements become large. This is the phenomenon of pure resonance.
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LRC-series electric circuit f mmmj \

i(r) - the current in a circuit at time ¢ L »
q(1) - the charge on the capacitor at time t % L
L - inductance
C - capacitance
R - resistance

C¥ e

According to Kirchhoff’'s second law, the impressed voltage E(r) must equal to
the sum of the voltage drops in the loop.

Vi + Ve + Vg =E(l)



Inductor

di d2q
Vi=L—=L—
L= "4 dr?
Capacitor
q
Ve = =
C~c
Resistor
dg
Ve =Ri = R—
R l dr
LRC circuit
dzq dg 1
L R —q = E(1
412 + dr + C‘! ()




Example: LRC circuit

Find the steady-state solution ¢, and the steady-state current in an LRC-series
circuit when the driving voltage is E(r) = Ejsin wi.

The steady-state solution ¢, is a particular solution of the differential equation

Using the method of undetermined coefficients, we assume the particular solution
of the form g,(1) = Asinwt + Bcos wt. Substituting this into the DE, simplifying and
equating coefficients gives

Eo(Lw - &) . EoR
—w(szz—%+ lw’-’ +R2), —w(szz— %+ Czlml +R2)




It is convenient to express this using the reactance X = Lw - 1/(Cw) and the
impedance Z = VX2 + R? (both measured in ohms). We get

EoX EgR
0 g Lo

A=

~wZ? T —wZ?
so the steady state charge is
EpX . EgR
1n(t) = — sIn wi — cos wt
I wZ? wZ?

and the steady-state current i,(r) = q;,(t)

) Eg (R . X
!p(f) = — (— sin wif — — cos wt)
Z \Z VA



