
Cauchy-Euler equation

In general, solving a linear equation with variable coefficients is more involved than
solving a linear equation with constant coefficients and typically involves a solution
in a form of an infinite series. However, the Cauchy-Euler equation is an exception
of which a general solution can always be expressed in terms of powers of x, sines,
cosines, logarithmic and exponential functions.

Any linear differential equation of the form
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where the coefficients an, an�1, . . . , a0 are constants is known as Cauchy-Euler equa-
tion. Notice that the degree k = n, n � 1, . . . , 1, 0 of the monomial coefficient x

k

matches the order k of the differenciation dk
y

dxk
.



To guarantee an existence of a unique solution, we will confine our attention to finding
the general solution on the interval (0,1). Solutions on the interval (�1, 0) can be
obtained by substituting t = �x into the differential equation.

We will start with examination of the forms of the general solutions of the homoge-
neous second-order equation
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Method of solution

We try a solution of the form y = x
m where m is to be determined. After substituting

y = x
m into a Cauchy-Euler equation, the equation becomes a polynomial in m times

x
m:
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For example, by substituting x
m to the second order equation gives
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m + bmx
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m = (am(m � 1) + bm + c)x
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Thus y = x
m is a solution of the differential equation whenever m is a solution of the

auxiliary equation:

am(m � 1) + bm + c = 0 or am
2 + (b � a)m + c = 0.

There are three distinct cases to be considered depending on whether the roots are

(I) real and distinct,
(II) real and equal, or
(III) complex.



Case I: Distinct real roots

Let m1 and m2 denote the real roots of the auxiliary equation

am
2 + (b � a)m + c = 0

such that m1 , m2. Then y1 = x
m1 and y2 = x

m2 form a fundamental set of solutions.
Hence the general solution is

y = c1x
m1 + c2x

m2.



Example: Solve:

x
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� 4y = 0.

Assume y = x
m and differentiate twice

dy

dx
= mx

m�1,
d2

y

dx2 = m(m � 1)x
m�2,

and substitute to the differential equation
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m�1 � 4x
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= x
m(m(m � 1) � 2m � 4) = x

m(m2 � 3m � 4) = 0.
The roots of the equation m

2 � 3m � 4 = 0 are m1 = �1,m2 = 4, so the general
solution is

y = c1x
�1 + c2x

4.



Case II: Repeated real roots

If the roots of the auxiliary equation

am
2 + (b � a)m + c = 0

are repeated, m1 = m2, then we obtain only one solution y = x
m1. In this case, it

follows from the quadratic formula that the root must be m1 = �(b � a)/2a.

We can construct the second solution y2 using the reduction of order method. We
write the Cauchy-Euler equation in the standard form
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with P(x) = b/ax and
R

(b/ax)dx = (b/a) ln x.



We get with P(x) = b/ax and
R

(b/ax)dx = (b/a) ln x the following
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The general solution is then

y = c1x
m1 + c2x

m1 ln x.



For higher-order equations, it can be shown that if m1 is a root of multiplicity k, then

x
m1, xm1 ln x, xm1 (ln x)2, . . . , xm1 (ln x)k�1,

are k linearly independent solutions and the general solution must contain a linear
combination of these k solutions.



Example: Solve
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The substitution y = x
m yields
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m((4m(m � 1) + 8m + 1) = x
m(4m
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when 4m
2 + 4m + 1 = (2m + 1)2 = 0, so m1 = �1

2 is a repeated root.

The general solution is then

y = c1x
�1/2 + c2x

�1/2 ln x.



Case III: Conjugate complex roots

If the roots of the auxiliary equation

am
2 + (b � a)m + c = 0

are the conjugate pair m1 = ↵ + i� and m2 = ↵ � i� where ↵ and � > 0 are real, then
a solution is

y = C1x
↵+i� +C2x

↵�i�.

However, we wish to write the solution in terms of real functions only.



We use the identity

x
i� =
⇣
e

ln x
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i� ln x

and using the Euler formula

x
i� = cos(� ln x) + i sin(� ln x)

and

x
�i� = cos(� ln x) � i sin(� ln x)

Adding and subtracting the last two results gives

x
i� + x

�i� = 2 cos(� ln x) and x
i� � x

�i� = 2i sin(� ln x),

respectively.



Taking into account that y = C1x
↵+i� + C2x

↵�i� is a solution for any values of the
constants, we choose C1 = C2 = 1 and C1 = �C2 = 1and get
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↵
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↵
⇣
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or

y1 = 2x
↵ cos(� ln x) and y2 = 2ix

↵ sin(� ln x)

are also solutions.

Since W
�
x
↵ cos(� ln x), x↵ sin(� ln x)

�
= �x2↵�1 , 0, � > 0, on the interval (0,1), we

conclude that

y1 = x
↵ cos(� ln x) and y2 = x

↵ sin(� ln x)

constitute a fundamental set of solutions of the differential equation.



The general solution is then

y = x
↵ ⇥

c1 cos(� ln x) + c2 sin(� ln x)
⇤
.

Once we have solved the associated homogeneous equation, we can use the method
of variation of parameters to find the solution of the original non-homogeneous
equation.



Example: Initial value problem

4x
2
y
00 + 17y = 0, y(1) = �1, y0(1) = �1

2
.

The solution y = x
m yields

4x
2
y
00 + 17y = x

m(4m(m � 1) + 17) = x
m(4m

2 � 4m + 17) = 0

when 4m
2 � 4m + 17 = 0 has two conjugate complex roots m1 =

1
2 + 2i and

m2 =
1
2 � 2i, so ↵ = 1

2 and � = 2.

The general solution is then

y = x
1/2 ⇥

c1 cos(2 ln x) + c2 sin(2 ln x)
⇤
.

By applying the initial conditions we find c1 = �1 and c2 = 0, so the solution of the
IVP is

y = �x
1/2 cos(2 ln x).



Example: Solve

x
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0 + 3y = 2x
4
e

x.

We first solve the associated homogeneous problem: from the auxiliary equation
(m � 1)(m � 3) = 0 we find

yc = c1x + c2x
3

We assume the particular solution in the form yp = u1y1 + u2y2 and

u
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0
2 =

W2
W

where W1, W2, and W are the determinants defined earlier and are derived under
the assumption that the ODE has been put into the standard form by division by x
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y
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x
y
0 +

3
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With the identification f (x) = 2x
2
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x, and y1 = x and y2 = x
3 we get
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and we find that
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The integral of the last expressions (for u1 using integration by parts twice), we get
the results

u1 = �x
2
e

x + 2xe
x � 2e

x and u2 = e
x

so the particular solution is

yp = u1y1 + u2y2 =
⇣
�x

2
e

x + 2xe
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⌘

x + e
x
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The general solution is then

y = yc + yp = c1x + c2x
3 + 2x

2
e

x � 2xe
x.



Remark:
There is a similarity between the form of solutions of Cauchy-Euler equations and
solutions of linear equations with constant coefficients.
For example when the roots of auxiliary equations for ay

00 + by
0 + cy = 0 and ax

2
y
00 +

bxy
0 + cy = 0 are distinct and real, the respective general solutions are

y = c1e
m1x + c2e

m2x and y = c1x
m1 + c2x

m2, x > 0.

As a consequence of the identity e
ln x = x, x > 0, the second solution can be ex-

pressed in the same form as the first solution:

y = c1e
m1 ln x + c2e

m2 ln x = c1e
m1t + c2e

m2t,

where t = ln x.
Any Cauchy-Euler equation can always be rewritten as a linear differential equation
with constant coefficients by means of the substitution x = e

t. The new equation
can be solved in terms of the variable t, and once the general solution is obtained,
resubstitute t = ln x.


